

Supporting our people

Private Bag 752, Kaikohe 0440, New Zealand
ask us@findc.gov1.nz
0 0800 920 029
findc.gov1.nz

1.

Request for approval of engineering plans and reports required by conditions of Resource Consent or Consent Notice

Applicant details (Consent Holder or Property Owner):

Name/s: (p names in fu	ease write all ll)	Waitoto Developments Limited	
Phone num	bers:	_ Home:	
Email:			
□ C	heck this bo	x if the you wish to be included in correspon	dence regarding this application.
2. D	esigner/Engi	neer contact details (Contact Person):	
Name/s: (pl names in fu	ease write all ll)		
Contact pho	one number:		
Email:			
	rimary Conta	act details:	-
		erson identified above is the primary point of con	tact):
	,	, ,	
Name/s:			
Please not if there are	te the Resour e any variation	t number for which these plan(s) or report(s) ce Consent or Consent Notice reference below. as or objections associated with this application. Imber: 2180493-RMAVAR/A, Decision - Variation.	Please ensure the correct suffix is used
5. C	onditions to	be approved:	
		nich this request relates and specify which docu	ments relate to each.
		quired, please attach a summary document.	
Conditio	n Documei	nt reference	Drawing numbers
3(c) iv, v & vi	25	n Management & Engineering Design Report 20-6-	All
	Drawings 2	3-7-25, pole lengths & FNDC EES	All

6. Does this application include any of the following (tick where appropriate):

Infrastructure:	To be vested:	Upgrades:	New connection:
Roads		Yes	
Street lighting			
Wastewater			
Stormwater	Yes	Yes	
Potable Water	×		

7.	Please note any	/ associated	Building	Consent r	eference	(if applicable)
	I Icase Hote all	associateu	Dullullia	CONSCIL	CICICIICC	III abbiicabiei.

Retaining	wall	number	to	come

Billing details:

This identifies the person or entity that will be responsible for paying any invoices or receiving any refunds associated with processing this request for approval of engineering plans and reports. Staff time required to process this approval will be charged on completion of the work. Please also refer to the council's Fees and Charges document (available at www.fndc.govt.nz). A deposit is payable when you submit this request.

			=							
Name/s: (please write all names in full)	Rod Haines,	(Waitoto Developme	nts Limited)							
Postal address:					_		_			_
			P	ost code:	-					=
Phone numbers:	Work:		_ Home:							
	Fax:		_ Email:						<u> </u>	-
Name of bill payer: R	od Hain	e s(please print)								
Signature:		ignature of b	ill payer – mandatory)	Date:	2	5 /	8 /	2	0 2	5 _
Important informati	on:									
Privacy information:	Once this applic	ation is lodged with the o	ouncil it becomes out	olic inform	natic	n. Pl	easo	e ad	vise	us if

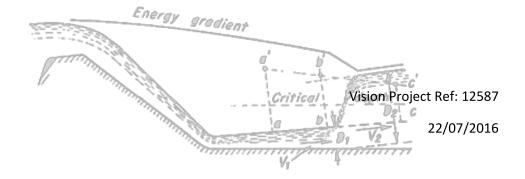
Privacy information: Once this application is lodged with the council it becomes public information. Please advise us if there is sensitive information included in this request. The information you have provided on this form is required so that your application for approval can be processed. The information will be stored on the council's property files and held by the Far North District Council and will be made available on request.

Declaration: The information I have supplied with this application is true and complete to the best of my knowledge.

Name: Steven Smith ___(please print)

Signature:

Date: 25/8/2025



FLAGSTAFF SUBDIVISION, LOT 2 DP497245, RUSSELL

S1 - S

$$\frac{2}{2g} - \left(D_1 + \frac{v_1}{2g}\right)$$

SITE SUITABILITY REPORT

TABLE OF CONTENTS

1	INTRODUCTION	4
2	SCOPE OF WORK	4
3	INDUSTRY GUIDANCE	5
4	SITE DESCRIPTION	6
4.1	Existing Site	6
4.2	Proposed Development	6
4.3	Geology	7
4.4	District Plan Zoning	7
4.5	Hazard mapping	7
4.6	Site Topography	8
5	GROUND CONDITIONS	8
5.1	Subsurface Conditions	8
5.1.1	Topsoil	8
5.1.2	Colluvium	9
5.1.3	Recent Alluvium	9
5.1.4	Residual Soil	9
5.1.5	Waipapa Group Bedrock	9
5.2	Groundwater	9
6	NATURAL HAZARDS	10
6.1	Erosion	10
6.2	Avulsion	10
6.3	Falling debris	10
6.4	Subsidence	10
6.5	Slippage	10
6.6	Inundation	10

6.7	Special soils	10
6.8	Subsequent use	11
7	LAND STABILITY	11
7.1	Stability of the gully head	11
7.2	Stability of shallow slides	11
7.3	Effluent disposal	12
8	SITE EARTHWORKS	12
8.1	Site fills	12
8.2	Site Cuts	12
8.3	Infrastructure	12
9	FOUNDATIONS	13
10	VEHICLE ACCESS	13
10.1	Access off Tapeka Road	13
10.2	Access off Prospect Street	13
10.3	Internal Access Roads	14
11	STORMWATER MANAGEMENT	14
12	ONSITE WASTEWATER DISPOSAL	15
12.1	Assumptions for Assessment	15
12.2	Site Constraints	16
12.3	Onsite Wastewater Disposal – Lots 1, 2 and 4	16
12.4	Onsite Wastewater Disposal – Lot 3	16
12.5	Cost Estimate	17
13	WATER SUPPLY	18
13.1	Potable Water Supply	18
13.2	Fire Fighting	18
14	TELECOMMUNICATIONS AND POWER	18

15	NATIONAL ENVIRONMENTAL STANDARD	18
16	RECOMMENDED CONSENT CONDITIONS	19
17	CONCLUSIONS	20
18	LIMITATIONS	20

APPENDICES

Appendix A: Williams and King subdivision layout plan

1 INTRODUCTION

Vision Consulting Engineers Limited (VISION) was commissioned by Waitoto Developments to provide a site suitability report to accompany a resource consent application to the Far North District Council (FNDC) for the residential subdivision of Lot 2 DP497245, Flagstaff Road, Russell (Flagstaff Subdivision). It is proposed to subdivide the land into 4 residential lots, refer to attached Williams and King proposed subdivision plan in Appendix A.

2 SCOPE OF WORK

The scope of work for the site suitability report is to assess land stability and suitability, stormwater, wastewater, vehicle access, earthworks, natural hazards and water supply (including fire fighting) for the proposed development as defined on the Williams and King survey drawing included in Appendix A.

The site suitability report is based on previous reports provided by Williams and King and obtained from the resource consent file for 15 Flagstaff Road, Russell (RC2060154). The reports used in this assessment are listed below:

- Fraser Thomas Limited, Waitoto Developments Ltd, Proposed Subdivision to create 10 Lots at Flagstaff Road, Russell, Engineering Report to Accompany Resource Consent Application, dated 12 August 2005, reference 37640.
- Fraser Thomas Limited, On-site Effluent Disposal for proposed Flagstaff Development, dated
 24 August 2006, reference 31649.
- Fraser Thomas Limited, Waitoto Developments Ltd, Proposed Residential Subdivision at Flagstaff Road, Russell, Geotechnical Investigation Report, dated November 2006, reference 60365.
- Fraser Thomas Limited, Waitoto Developments Ltd, Proposed Subdivision Flagstaff Hill
 Resource Consent Application No. 2060154, Wastewater Treatment and Disposal Report,
 dated 14 February 2007, reference 31649.
- Fraser Thomas Limited, Waitoto Subdivision: RC2060154, Supplementary Report on Roading Issues, dated 14 February 2007, reference 37640.
- Duffill Watts and King Limited, RC2060154, Waitoto Developments Subdivision, Flagstaff Hill,
 Russell, Engineering Assessment, dated 4 May, 2007.

- Duffill Watts and King Limited, Far North District Council, Review of Proposal for Residential Subdivision at Flagstaff Road, Russell, dated 8 May 2007, reference file no. 287/3/2.
- Tonkin and Taylor, Waitoto Developments Flagstaff Hill, Russell, Geotechnical Review, dated
 20 June 2007, reference 24568.
- Duffill Watts and King Limited, Statement of Evidence by Michael John Winch on behalf of the respondent, dated 28 June 2007, reference ENV-2006-AKL-00850.
- Haigh Workman Limited, Engineering Report for Proposed Subdivision Lot 12 DP422340,
 Flagstaff Road, Russell for Waitoto Developments Ltd, dated January 2016, reference 16 002.

It should be noted that the Fraser Thomas site suitability addendum report (referenced in the Haigh Workman report) was not able to be sourced for review as part of this report.

3 INDUSTRY GUIDANCE

This report has been prepared in accordance with the requirements of the Far North District Council Engineering Standards & Guidelines 2004 - Revised March 2009 and with reference to the District Plan; Section 106 of the Resource Management Act (RMA) and NZS4404:2010.

4 SITE DESCRIPTION

4.1 Existing Site

The Flagstaff Subdivision is located to the north of the township of Russell, at Lot 2 DP497245, Flagstaff Road. The site is approximately 3.8422 hectares (ha) and is located within a valley bounded by Flagstaff Road to the west, to the north by a ridge line that extends across the site to the east and south towards Prospect Road.

The majority of the site is covered in native bush and two ephemeral water courses run in a north-south orientation through the gully, meeting at Lot 10 DP422340 to the south of the site. The watercourse then passes through the northern end of Russell township and discharges into Kororareka Bay. A general site plan is presented in Figure 1 below.

Figure 1 – Site Location Plan (site boundary indicative only)

4.2 Proposed Development

The Williams and King proposed subdivision plan included in Appendix A presents the subdivision of Lot 2 DP497245 which involves subdividing the site into 4 new lots, Lots 1 to 4, with all lots proposed to be residential lots.

Lot 1 will be accessed off a right of way (ROW) Tapeka Road, where residential Lots 2 to 4 will be accessed off Prospect Street which is located immediately south of the site.

4.3 Geology

The 1:250,000 geological map of Whangarei indicates that the site is generally underlain by greywacke of the Waipapa Group. The Waipapa Group is described as massive to thinnly bedded, lithic volcaniclastic metasandstone and argillite, with tectonically enclosed basalt, chert and silceou.

During the site investigation carried out by Fraser Thomas Ltd, the material encountered across the site was inferred to be weathering products of the greywacke and argillite. However material inferred to be colluvium was encountered generally within the lower parts of the site.

4.4 District Plan Zoning

The site is zoned Coastal Living with respect to the Far North District Council District Plan.

4.5 Council hazard mapping

The Northland Regional Council (NRC) and Far North District Council (FNDC) hazard layers have been reviewed. According to the NRC and FNDC hazard layers the site is <u>not</u> located in an area susceptible to:

- Landslide
- Special soils
- Erosion
- Flooding
- Coastal Flooding
- Coastal Hazards
- Tsunamai

4.6 Site Topography

A site walkover and a review of historic aerial photographs (1951) was undertaken by Fraser Thomas Limited as part of the geotechnical report and the following observations were made regarding the topography of the site:

- The site is generally located on side slopes associated with three slightly sloping ridges
- West and south trending ridges generally extend along the northern and eastern site boundaries respectively.
- The side slopes associated with these ridges are generally steep and slope between approximately 25 and 40 degrees to the horizontal, 1V:2.14H to 1V:1.19H.
- A head scarp was evident in the historic aerial photograph dated 1951 on the southern facing side slope near the northern boundary of the site.
- An existing head scarp, approximately 3.0m in vertical height and approximately 25m wide was observed along the lower parts of the west facing side slopes at the site.
- An existing gully is located at the toe of the side slopes present at the site. The gully extends
 to the south through the central portion of the site. Two shallow streams, approximately 2
 metres wide extend to the base of the gully. The gully is well vegetated.

5 GROUND CONDITIONS

5.1 Subsurface Conditions

Ground investigations have been carried out at the site by Fraser Thomas Limited in 2006 and Haigh Workman Limited in January 2016. Fraser Thomas carried out a geotechnical investigation at the site comprising 8 hand auger boreholes, 6 test pits and 2 machine boreholes. Haigh Workman carried out a geotechnical investigation comprising of 1 hand augured borehole.

The ground conditions encountered during the investigations generally indicate that the site is underlain by soils which are inferred to be weathered greywacke and argillites. Material inferred to be colluvium, associate with past instability at the site was encountered within the lower areas of the site.

5.1.1 Topsoil

Topsoil was encountered at all borehole and test pit locations. The thickness of the topsoil ranged from 0.05m to 0.2m below existing ground surface level.

5.1.2 Colluvium

Colluvium was encountered at some test locations and was generally encountered to depths of 1.2 to 2.6m below existing ground surface level. The colluviums typically comprised silty clay intermixed with siltstone and sandstone fragments and was stiff to very stiff with an undrained shear strength ranging from 75 kPa to greater than 215kPa.

5.1.3 Recent Alluvium

Recent alluvium was encountered in a borehole completed to the south of the site, however it is inferred that the alluvium may be present adjacent to the south-western boundary of the site. The recent alluvium comprised soft to stiff organic and inorganic silty clay. Undrained shear strengths measured in the alluvium ranged from 10 to 100kPa.

5.1.4 Residual Soil

Residual soil encountered across the site typically consisted of stiff to very stiff silty clay. Undrained shear strengths measured within the residual soil ranged from 115 to greater than 240kPa.

5.1.5 Waipapa Group Bedrock

The residual soils at the site are inferred to be underlain by highly to slightly weathered rock. The depth to bedrock has been inferred to be between 1.2 and 4.3m below existing ground surface level based on Dynamic Cone Penetrometer (DCP) results, test pit and borehole logs.

5.2 Groundwater

Groundwater levels were measured in boreholes and test pits during the site investigation carried out by Fraser Thomas Limited and the groundwater levels within piezometers installed in machine borehole M1 and M2 were measured on the 9 November 2006. Groundwater was not encountered during the site investigation. However groundwater levels of 11.8m below ground level (mbgl) and 9.9m bgl were recorded in M1 and M2 respectively on the 9 November 2006.

6 NATURAL HAZARDS

With regard to the natural hazards included in RMA Section 106, VISION provides the following assessment.

6.1 Erosion

The site is considered to have a low erosion potential. It is recommended that existing vegetation is maintained wherever possible and cut slopes are protected against erosion.

6.2 Avulsion

Fraser Thomas' review of historic aerial photography indicates that the course of the ephemeral streams have remained relatively unchanged since 1951. This indicates that channel regression is minimal and the risk to the proposed development of erosion or avulsion associated with the streams changing course is low.

6.3 Falling debris

There are no sources of falling debris at the site.

6.4 Subsidence

It is recommended that all buildings within the subdivision have specific engineered foundations. Due to this requirement, the risk associated with subsidence (vertical settlement) is considered to be low.

6.5 Slippage

It is recommended that specific geotechnical investigations and assessment are carried out during detailed design to assess stability. Retaining walls and/or palisade walls and/or deflection walls may be required to protect dwellings, appurtenant structures, and ROW's from potential slippage hazards. If these measures are implemented, the risk of slippage at the site is considered to be low.

6.6 Inundation

The proposed building platforms and ROW's are not considered to be at risk due to inundation from flooding, stormwater overflow paths or coastal inundation. Therefore the risk associated with inundation is considered to be low.

6.7 Special soils

No special soils have been identified as being present at the building platforms and ROW's. Therefore the risk associated with special soils is considered low.

6.8 Subsequent use

Proposed changes to the land include the development of residential dwellings and associated infrastructure. Such development is considered unlikely to adversely affect or worsen the site's susceptibility to material damage.

In summary, the land proposed to be developed as the Flagstaff Subdivision is considered to be unlikely to be subject to material damage by erosion, falling debris, subsidence, slippage, or inundation from any source if the engineering recommendations within this report are adopted.

7 LAND STABILITY

An assessment of the stability of the land was carried out by Fraser Thomas Limited as part of their geotechnical investigation report. The report was reviewed by Tonkin and Taylor who generally agreed with the original assessment. Tonkin and Taylor raised the following stability issues for the site which are discussed in the following sections:

- Stability at the head of the gully Lot 1, in the north-western corner of the site
- Stability of shallow slips over all lots excluding the lower portions of Lot 3, and 4 and Lot 2 (formerly Lot 5 and 6)
- Effluent of effluent disposal on slope stability

7.1 Stability of the gully head

The topography of the gully indicates a potential for deep seated failure. Machine boreholes completed by Fraser Thomas at the site did not identify any shear seams within the rock mass and the stability analysis carried out indicated that the factor of safety of the slope under winter groundwater levels was greater than 2.2. Therefore the risk of deep seated movement is considered to be low. Tonkin and Taylor concurred with Fraser Thomas' assessment.

7.2 Stability of shallow slides

The existing topography of the site includes steep slopes up to approximately 57 degrees. Stability analysis carried out by Fraser Thomas indicate factors of safety of greater than 1.5 and 1.2 for wet winter and extreme transient groundwater levels respectively for shallow landslides. However Tonkin and Taylor reference a shallow slip that occurred immediately to the south of the site (7 Flagstaff Road) following a severe storm event in March 2007 affecting a slope of approximately 35 degrees which resulted in damage to the rear of the dwelling.

Tonkin and Taylor recommend that stabilisation measures are implemented within the subdivision to prevent potential damage occurring to dwellings from shallow landslides by either a series of tiered walls upslope of the dwelling or a debris wall at the rear of dwellings to prevent slope debris impacting the dwelling.

7.3 Effluent disposal

Tonkin and Taylor recommend that stability measures should be considered to ensure stability of the septic tank and recirculating textile filter as well as the dripper irrigation system.

The risk of land instability for the site can be mitigated with specific engineer designed foundations for all buildings and the use of retaining walls and/or palisade walls, deflection walls and engineered batter slopes. It is recommended that all building platforms and the land appurtenant to the building platforms are assessed by a chartered professional engineer experienced in geotechnical engineering.

8 SITE EARTHWORKS

Earthworks will be required in portions of the site to form ROWs, driveways and building platforms. At this stage, the volume of earthworks is not able to be provided. The following recommendations are provided regarding earthworks at the site.

It is recommended that the existing vegetation on the slopes of the site be retained and protected from damage by felling and clearing wherever possible.

8.1 Site fills

It is recommended that fill slopes are constructed at a maximum batter slope of 1V:2H to a maximum height of 1.0m. All fill slopes greater than 1.0m in height are to be engineer designed by a chartered professional engineer experienced in geotechnical engineering.

8.2 Site Cuts

It is recommended that cut slopes are constructed at a maximum slope angle of 1V:3H to a maximum height of 1.0m. All cut slopes greater than 1.0m in height are to be engineer designed by a chartered professional engineer experienced in geotechnical engineering.

8.3 Infrastructure

It is not anticipated that there will be any geotechnical constraints associated with trenching for the buried infrastructure.

Groundwater is considered to be deep and was generally encountered beyond 9.9m depth. Perched water above this depth is anticipated during winter and severe storm events. Sumps and submersible pumps may be required to remove water from the base of excavations following periods of intensive rain events.

9 FOUNDATIONS

The site is considered to be suitable for building light timber framed houses generally in accordance with NZS3604, however foundations are to be specifically engineered designed. Foundations are likely to be either concrete slab-on grade or piled foundations. Where concrete slab-on grade foundations are used leading edge piles or palisade walls may be required adjacent to sloping ground. Any weak or unsuitable materials present beneath shallow foundations shall be removed and replaced with engineer certified fill in accordance with NZS4404.

It is recommended that all foundations are specifically engineer designed by a chartered professional engineer experienced in geotechnical engineering.

10 VEHICLE ACCESS

All access to the subdivision will be via private driveways finished with a concrete surface. There are two proposed access points to the Flagstaff subdivision:

- Via the existing ROW off Tapeka Road, providing access to Lot 1
- Via a new ROW off Prospect Street, providing access to Lots 2 to 4

10.1 Access off Tapeka Road

Lot 1 will be accessed via the existing ROW off Tapeka Road in the north-western corner of the site.

The existing access has been assessed by Haigh Workman as generally achieving the requirements for a double domestic crossing given in the FNDC Engineering Standards Drawing FNDC/S/6B.

No upgrade or improvement to the existing crossing is required as part of the subdivision.

10.2 Access off Prospect Street

Lots 2 to 4 will be accessed via a new ROW off Prospect Street located to the south of the site. The Fraser Thomas Engineering Report indicates that there is an existing steep 3 to 3.5m wide concrete

driveway at the northern end of Prospect Street, servicing the existing houses. The existing concrete driveway on the public road section of Prospect Street has a maximum gradient of approximately 1V:3.3H.

It is proposed to share this drive up the hill and then diverge with a new drive at an average grade of approximately 1 in 4.

It is recommended that Prospect Street from Little Queen Street to ROW C is formed as a 5.0m wide concrete accessway in general accordance with Appendix 3B of the FNDC District Plan. This is in line with the previously granted resource consent (RC2080941). However the existing gradient (1V:3.3H) of Prospect Street is recommended to be retained to prevent altering access to the existing properties that use the driveway. The low speed nature of the driveway has also been taken into consideration. The emphasis for design will be on safety and not speed.

10.3 Internal Access Roads

Access roads formed within the subdivision are likely to require earthworks comprising of cuts and fills. As discussed in Section 8 it is recommended that <u>fill slopes are constructed at a maximum batter slope of 1V:2H and cut slopes are constructed at a maximum slope angle of 1V:3H to a maximum height of 1.0m.</u>

It is recommended that the stability of access roads are assessed by a chartered professional engineer experienced in geotechnical engineering. Retaining walls may be required to stabilise cut slopes or fill batters.

11 STORMWATER MANAGEMENT

Stormwater management at the site will be designed in accordance with FNDC District Plan Rules regarding impermeable surfaces and stormwater attenuation. The site is zoned Coastal Living and the permitted activities for impermeable surfaces defined within the District Plan states that the maximum proportion of the gross site area covered by buildings and other impermeable surfaces shall be 10% or 600m², whichever is the lesser. Upon completion of the development civil works, the impermeable surfaces at the site will not exceed the permitted criteria.

It is worth noting that Lots 1 and 3 are likely to require stormwater attenuation at the time of building consent. It is recommended that stormwater design is carried out by a chartered professional engineer in accordance with ARC Technical Publication TP10: Stormwater Treatment Devices – Design Guideline Manual if the proposed buildings and associated areas exceed the permitted threshold.

It is recommended that all concentrated stormwater discharges from house sites be piped to the base of the gully to prevent water soaking into the ground. Disposal of stormwater that relies on soakage should not be permitted.

VISION understand that the downstream flooding risk of Russell township previously reported by Duffill Watts and Haigh Workman Limited has been mitigated by the recent upgrading of the Russell stormwater system (comms. Craig Ambler).

12 ONSITE WASTEWATER DISPOSAL

The proposed Flagstaff Subdivision site lies outside of the area of benefit for the Russell wastewater scheme. VISION approached FNDC to seek approval for connecting the subdivision into the existing reticulation system in Prospect Street, however this was declined due to:

- The subject site being outside the scheme area of benefit and so has not be contributing towards the capital costs of the scheme;
- The Russell treatment plant is now marginally under capacity during peak loads and as such doesn't have any spare capacity to cater for properties outside the area of benefit.

It is therefore proposed to dispose of wastewater on each lot via an onsite wastewater disposal.

12.1 Assumptions for Assessment

For the purpose of the site suitability report, it has been assumed that each lot will include a modern 4 bedroom dwelling (6 people). In addition the following design parameters have been assumed:

- Design flows of 160 litres/day per person (each dwelling contains dual flush toilets, low water use dishwasher and no garbage grinder)
- Design loading rates of 1-2 L/m²/day
- Irrigation area of between 1,290 and 1,560m² (including reserve) for the above design loading rates.

12.2 Site Constraints

The following site constraints have been identified for the overall site:

- Steeply sloping topography
- Low topsoil depths overlying soils with poor drainage characteristics
- Potential for down-slope transmission of treated effluent (particularly in times of significant rainfall) leading to possible contamination of the two watercourses present at the site.
- Proximity to site boundaries and watercourses

Given these constraints, it is considered that the following systems are likely to be suitable for the sites as discussed in the following sections.

12.3 Onsite Wastewater Disposal – Lots 1, 2 and 4

Secondary treatment with pressure compensating drip irrigation (PCDI) lines using a design loading rate of 1-2 L/m²/day based on the individual site constraints. Lots 1, 2 and 4 are expected to have sufficient area using permitted setbacks.

12.4 Onsite Wastewater Disposal – Lot 3

It may be possible to install a system as described for the other proposed lots, however Lot 3 has limited area available for land application of secondary treated effluent. If insufficient area is found using permitted setbacks, tertiary treatment or advanced tertiary treatment may be required with appropriate discharge consents.

12.5 Cost Estimate

Costs associated with the installation of these systems are anticipated to be as follows:

Secondary Treatment with PCDI \$12,000 - \$14,000

Advanced Secondary Treatment with PCDI \$14,000 - \$16,000

Tertiary & Advanced Tertiary Treatment (including consents) \$18,000 - \$30,000

These prices are estimates only and should be confirmed by a contractor.

It is recommended that the design of the onsite wastewater disposal is undertaken by a chartered professional engineer experienced in onsite wastewater disposal. The final system design and layout will be dependent on the location of the building platform and associated structures (water tanks, driveways, etc.). The location of the irrigation field should be determined in consultation with a chartered professional engineer experienced in geotechnical engineering to assess the potential impact on slope stability.

If the recommendations provided for onsite wastewater disposal are adhered to, the disposal of treated effluent is expected to have a minimal effect on the environment.

13 WATER SUPPLY

13.1 Potable Water Supply

Water supply will be from water collected from building roofs and stored in water tanks. <u>It is</u> recommended that systems should be fitted with either a first flush device or filtration to improve water quality.

13.2 Fire Fighting

FNDC Engineering standards require that a water supply is provided that is adequate for fire fighting purposes. As discussed above water supply for the development will be via stored rainwater. For a single family home without a sprinkler system, the New Zealand Fire Service Fire Fighting Water Supplies code of practise SNZ PAS 4509:2008 recommends a minimum water storage capacity of 45m³ within 90m of the dwelling for firefighting purposes where water supply is from a non-reticulated system.

It is recommended that provision of water storage to meet the requirement of the rural fire service for fire fighting purposes be required for each dwelling.

14 TELECOMMUNICATIONS AND POWER

Telecommunication and power services are expected to access each proposed dwelling via ROW's proposed as part of the subdivision.

15 NATIONAL ENVIRONMENTAL STANDARD

National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NES; MfE, 2011a) came into effect in January 2012. The standard provides regulations to ensure that land affected by contaminants in soil is appropriately identified and assessment prior to development and if necessary remediated or the contaminants are contained to make the land safe for human use.

The Hazardous Activities and Industries List (HAIL) identify activities and industries that are considered likely to cause land contamination resulting from hazardous substance use, storage or disposal. The intention of the HAIL is to identify land where hazardous substances could cause or may have caused land contamination.

VISION has not been engaged to assess the site in terms of the NES.

16 RECOMMENDED CONSENT CONDITIONS

The following resource consent conditions are recommended to ensure that the subdivision is completed in accordance with the recommendations provided in this report:

- All building platforms and the land appurtenant to the building platforms are to be assessed by a chartered professional engineer experienced in geotechnical engineering.
- The existing vegetation on the slopes of the site are to be retained and protected from damage by felling and clearing wherever possible.
- Fill slopes are constructed at a maximum batter slope of 1V:2H and cut slopes are constructed
 at maximum slope angle of 1V:3H to a maximum height of 1.0m. All fill batters or cut slopes
 greater than 1.0m in height are to be engineer designed by a chartered professional engineer
 experienced in geotechnical engineering.
- All foundations are to be specifically engineer designed by a chartered professional engineer experienced in geotechnical engineering.
- Prospect Street from Little Queen Street to ROW C is to be formed as a 5.0m wide concrete accessway in general accordance with Appendix 3B of the FNDC District Plan. This is in line with the previously granted resource consent (RC2080941). However the existing gradient (1V:3.3H) of Prospect Street is recommended to be retained to prevent altering access to the existing properties that use the driveway.
- The stability of access roads are to be assessed by a chartered professional engineer experienced in geotechnical engineering. Retaining walls may be required to stabilise cut slopes or fill batters.

• Consent Notices:

- Stormwater design is carried out by a chartered professional engineer in accordance with ARC Technical Publication TP10: Stormwater Treatment Devices – Design Guideline Manual.
- All concentrated stormwater discharges from house sites be piped to the base of the gully to prevent water soaking into the ground. Disposal of stormwater that relies on soakage should not be permitted.
- The design of the onsite wastewater disposal is undertaken by a chartered professional engineer experienced in onsite wastewater disposal. The location of the irrigation field is to be determined in consultation with a chartered professional engineer experienced in geotechnical engineering to assess the potential impact on slope stability.

- Potable water storage systems should be fitted with either a first flush device or filtration to improve water quality
- Water storage to meet the minimum requirement for fire fighting purposes in accordance with SNZ PAS 4509:2008 is required for each dwelling.

17 CONCLUSIONS

Provided the recommendations given in this report are adhered to, the subject site is considered to be suitable for the proposed subdivision depicted on the attached Williams and King Subdivision plan. On completion of the subdivision development and the formation of building platform, each dwelling and the land appurtenant to the dwellings are unlikely to be subject to material damage by erosion, subsidence, slippage, or inundation from any source. Furthermore, the development of the house sites is not likely to accelerate, worsen, or result in material damage to that land, other land, or structure by erosion, subsidence, slippage, or inundation from any source.

18 LIMITATIONS

This report has been prepared solely for the use of our client, Waitoto Developments, and their professional advisers and the Far North District Council in relation to the specific project described herein.

Information, opinions and recommendations contained in this report cannot be used for any other purpose or by any other entity without our review and written consent. Vision Consulting Engineers Ltd accepts no liability or responsibility whatsoever for or in respect of any use or reliance upon this report by any third party.

Opinions given in this report are based on a review of previous reports prepared by others. The nature and continuity of the subsurface materials are inferred and it must be appreciated that actual conditions could vary from that described herein.

If you have any queries or you require any further clarification on any aspects of this report, please contact the undersigned.

For and on behalf of Vision Consulting Engineers Limited

Prepared by

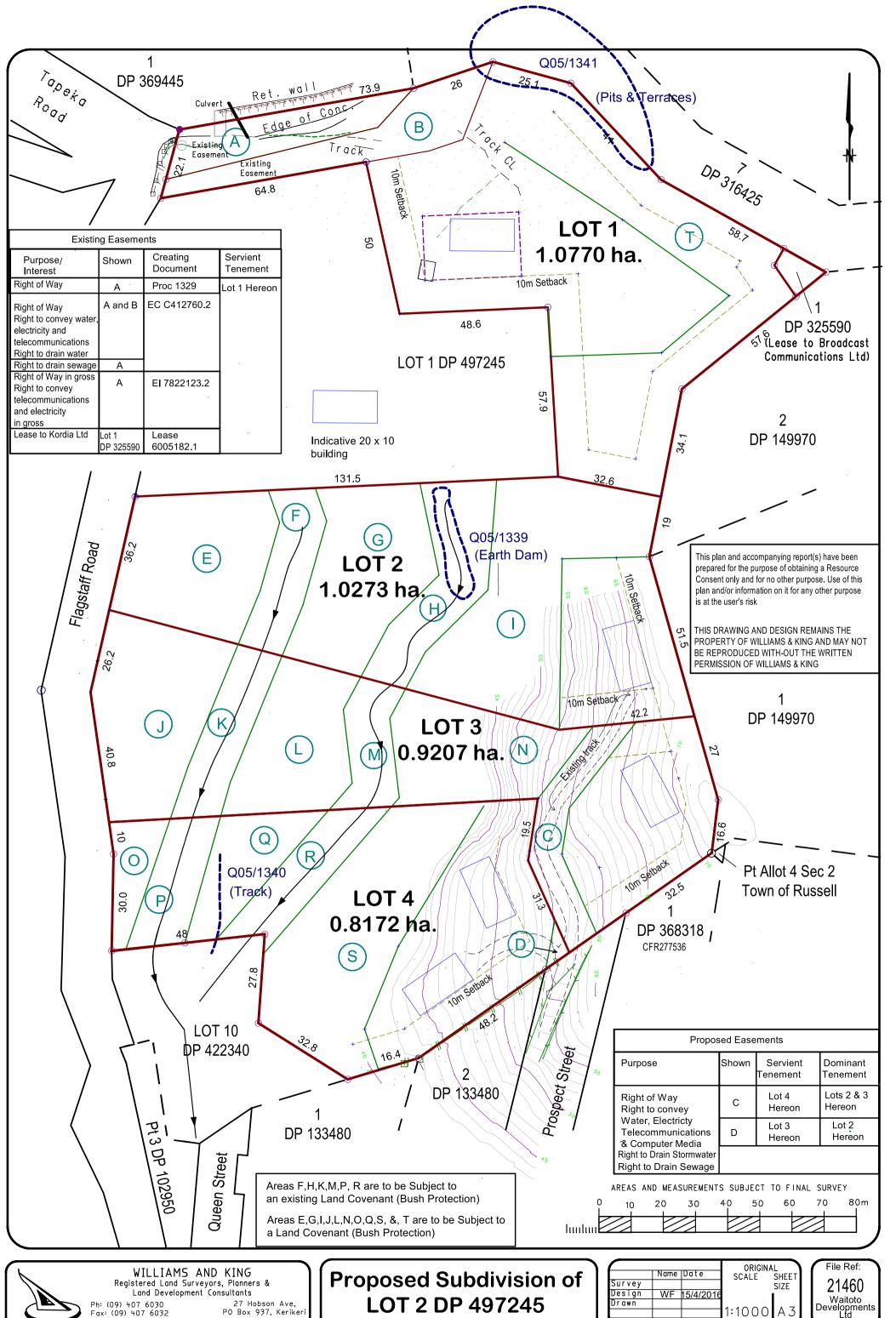
Prepared by & reviewed by

Dan Simmonds

BEng (Civil)

Senior Geotechnical Engineer

Ben Perry MIPENZ CPEng


Managing Director

Appendix A – Williams and King Proposed Subdivision Plan.

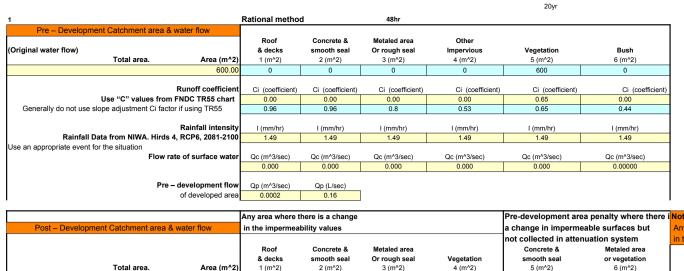
Appendix A – Williams and King Subdivision Plan

Fax: (09) 407 6032 Email: Kerikeri@saps.co.nz

		ID-1-	ORIGINA	
	Name	Date	SCALE	SHEET
Survey				SIZE
Design	WF	15/4/2016		ı I
Drawn			4 40 0 0	 ,
			1:1000	Α3
Ver	4	20/7/2016		レノ

Waitoto Developments Ltd

Sheet2


Volume of new Prospect Street earthworks Cut

Road section					Compacted
Length	Width	Area 1	Depth	Depth %	Volume 1
m	m	m^2	m	m	m^3
128	5.75	736.0	0.275	0.75	151.8
120	0.70	700.0	0.270	0.70	Allow 170m^3
Batter from 100) to 128m West	ern side			Compacted
	Width	Area 2	Depth	Depth %	Volume 2
Length		m^2	•	-	m^3
m 28	m 7		m	m 0.4	_
20	1	196.0	1.8	0.4	141.1
A ()	l la alta Anta				Allow 150m ³
Attenuation tan			5 (1	D 11 0/	Compacted
Length	Width	Area 3	Depth	Depth %	Volume 3
m	m	m^2	m	m	m^3
5	5	25.0	1.8	0.2	9.0
					Allow 10m ³
Manholes, Wes	stern side				Compacted
Number	Dia	Area 4	Depth	Depth %	Volume 4
	m	m^2	m	m	m^3
4	1.5	7.1	1.8	1	12.7
•	•				A.II. 4.EAO
					Allow 15m ³
			Cut volume (compacted)	Allow 15m/3
		Total	Cut volume (c	compacted)	Allow 15m/3
	Fill	Total		compacted)	Allow 15m/3
Road section	Fill	Total		compacted)	
Road section Length			345.0		Compacted
Length	Width	Area 5	345.0 Depth	Depth %	Compacted Volume 5
Length m	Width m	Area 5 m^2	345.0 Depth m	Depth % m	Compacted Volume 5 m^3
Length	Width	Area 5	345.0 Depth	Depth %	Compacted Volume 5 m^3 93.6
Length m 128	Width m 5.85	Area 5 m^2 748.8	345.0 Depth m	Depth % m	Compacted Volume 5 m^3 93.6 Allow 100m^3
Length m 128 Attenuation tan	Width m 5.85 k leveling, Wes	Area 5 m^2 748.8 stern side	345.0 Depth m 0.125	Depth % m 1	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted
Length m 128 Attenuation tan Length	Width m 5.85 k leveling, Wes Width	Area 5 m^2 748.8 stern side Area 6	Depth m 0.125	Depth % m 1 Depth %	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6
Length m 128 Attenuation tan Length m	Width m 5.85 k leveling, Wes Width m	Area 5 m^2 748.8 stern side Area 6 m^2	Depth m 0.125 Depth m	Depth % m 1 Depth % m	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3
Length m 128 Attenuation tan Length	Width m 5.85 k leveling, Wes Width	Area 5 m^2 748.8 stern side Area 6	Depth m 0.125	Depth % m 1 Depth %	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8
Length m 128 Attenuation tan Length m 5	Width m 5.85 k leveling, Wes Width m 5	Area 5 m^2 748.8 stern side Area 6 m^2	Depth m 0.125 Depth m	Depth % m 1 Depth % m	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8 Allow 4m^3
Length m 128 Attenuation tan Length m 5 Manholes, Wes	Width m 5.85 k leveling, Wes Width m 5	Area 5 m^2 748.8 stern side Area 6 m^2 25.0	Depth m 0.125 Depth m 0.15	Depth % m 1 Depth % m 1	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8 Allow 4m^3 Compacted
Length m 128 Attenuation tan Length m 5	Width m 5.85 k leveling, Wes Width m 5	Area 5 m^2 748.8 stern side Area 6 m^2 25.0 Area 7	Depth m 0.125 Depth m 0.15 Depth	Depth % m 1 Depth % m 1 Depth %	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8 Allow 4m^3 Compacted Volume 7
Length m 128 Attenuation tan Length m 5 Manholes, Wes Number	Width m 5.85 k leveling, Wes Width m 5 stern side Dia m	Area 5 m^2 748.8 stern side Area 6 m^2 25.0 Area 7 m^2	Depth m 0.125 Depth m 0.15 Depth m	Depth % m 1 Depth % m 1 Depth % m 1	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8 Allow 4m^3 Compacted Volume 7 m^3
Length m 128 Attenuation tan Length m 5 Manholes, Wes	Width m 5.85 k leveling, Wes Width m 5	Area 5 m^2 748.8 stern side Area 6 m^2 25.0 Area 7	Depth m 0.125 Depth m 0.15 Depth	Depth % m 1 Depth % m 1 Depth %	Compacted Volume 5 m^3 93.6 Allow 100m^3 Compacted Volume 6 m^3 3.8 Allow 4m^3 Compacted Volume 7

Fill volume (compacted)

Total

106.0

٦
1
1
7
٦
1
٦
٦

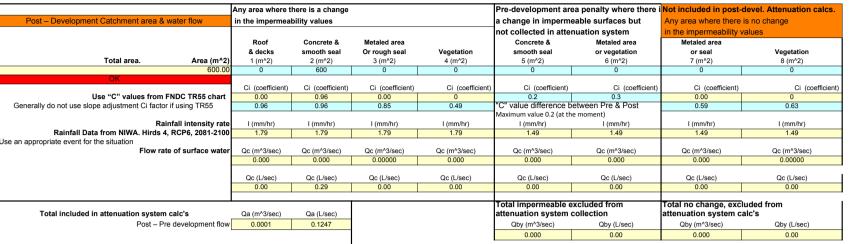
0.00			
	1	Ci (coefficient)	Ci (coefficient)
	-	0.00	0.00
	_		
ost-development		I (mm/hr)	I (mm/hr)
Slope		2.92	2.92
%		•	
10	1	Qc (m^3/sec)	Qc (m^3/sec)
	1	0.000	0.000
Ci correction		•	
0.00		Qp (m^3/sec)	Qp (L/sec)
	1	0.000	0.3

Rational method

& decks

0.00

Concrete &

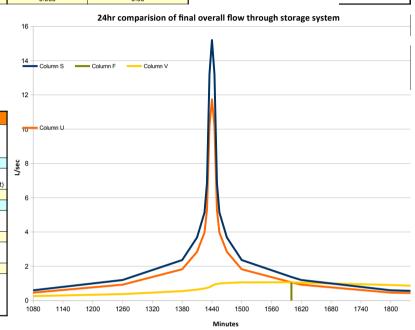

smooth seal

2 (m^2)

0.00

0.3						
Any area where there is a change						
in the impermeability values						
Concrete &						
smooth seal						
2 (m^2)						
600.00						
Ci (coefficient)						
0.96						
I (mm/hr)						
3.50						
Qc (m^3/sec)						
0.001						
Qc (L/sec) 0.56						

Total in attenuation syst	em calc's
Qa (m^3/sec)	Qa (L/sec)
0.0002	0.24
0.0002	0.24


Post - Pre development flow 0.0001 0.12 Total post development flow Developed flow + undeveloped flow Qatt (m^3/sec) Qatt (L/sec) 0.0003 0 to 10min Total C Will be Ze Only has

Qtpp (m^3/sec)

Qtpp (L/sec)

Post - Pre development flow without penalty factor

0 to 10111111						
1b	Rational meti	nod	48hr			
Total Catchment Post-Development area & flow collected	Do not inclu	de areas fron	n Post – Devel	opment Catchm	ent area & water	flow (above)
Will be Zero if pre & post impermeable areas are the same	Roof	Concrete &	Metaled area	Other		
Only has an affect if larger area is collected post-development	& decks	smooth seal	Or rough seal	Impervious	Vegetation	Bush
Total area. Area (m^2)	1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)
0.00	0	0	0	0	0	0
Runoff coefficient	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)
Use "C" values from FNDC TR55 chart	0.00	0.00	0.00	0.00	0.00	0.00
Generally do not use slope adjustment Ci factor if using TR55	0.96	0.96	8.0	0.53	0.44	0.59
Rainfall intensity	I (mm/hr)	I (mm/hr)	I (mm/hr)	I (mm/hr)	I (mm/hr)	I (mm/hr)
Rainfall Data from NIWA. Hirds 4, RCP6, 2081-2100	1.49	1.49	1.49	1.49	1.49	1.49
Use an appropriate event for the situation						
Flow rate of surface water	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)
	0.000	0.000	0.000	0.000	0.000	0.000
Catchment area pre – development flow	Qcap (m^3/sec)	Qcap (L/sec)				
	0.0000	0.000				
_	· · · · · · · · · · · · · · · · · · ·					

·						Calculation (initial)	Calculation (final)	Num. Of tanks	Slope out control	(volume)	
				Calculation (initial)	Calculation (initial)	usable height	Additional area	1	1930min (row4235)	2130min (row4435)	2160min (line4465
	Round	Square		Total tank area	Total tank volume	hmax (m)	m^2	r (m)	0.00681	0.00601	0.0058935
Select 1 for type of tank/area, 0 for other	1	0		m^2	m^3	2.355	Nil	1.85	0.02019	0.01740	0.0169806
Estimate storage volume			Tank radius	10.18	23.97	OK	Total area	m^2 for fixed H68 height	1.33744	1.13827	1.108715
Adjust to match max Vstored	Num. Of tanks		r (m)		Initial calculation	OK	Same as initial	10.75		If using slope control	0.029559
Round area	1		1.8	10.18	hstor max.	2.355	Final volume (Use this)	Not used			Diff. = 0.0015+-0.0
	Num. Of tanks	Width	Length	m^2	Vstored max.	23.970	23.97	Trench width	160 minute crosso	<u>ver</u>	minute steps
Square/rectangular area	3	6	2	36.00	Vstored min.	0.167		11.47	1500	1600	1620
	20/40	30% compacted	Void in metal	103.0 m^3	0.05 to3.5% left @ 48hr	0.70	Additional Volume	Trench length	0.00236	0.00137	0.00120
Short tube, 0.76	Orifice type "u"	g		120m^2		ОК	Same as initial	20	0.00106	0.00106	0.00104
Thin sharp, 0.62	0.76	9.8067		Graph, 24hr a	fter peak, Vstored 2880m	1.358	Not used	m^2 for fixed H68 height	-0.00130	-0.00031	-0.00016
				Max.10% le	ft @ 48hr from initial calc.	5.66	5.66	229.40		Minimise L90	
					or add extra volume			Not used		Line to compare pre-deve	lopment original
	48hr	24hr	12hr	6hr	2hr	60	30	20	10	line with crossover line ch	anges at point
Pre – development flow	C20	L20	U20	AD20	AM20	AV20	BE20	BN20	BW20	minute steps	Qpre (L/sec)
3 of developed area	0.00016	0.00032	0.00060	0.00120	0.00236	0.00368	0.00514	0.00687	0.01322	1445	13.2
	•						Slope factor			1450	6.9
Pre-development flow matches 2hr 40min. Intensity	Qp (m^3/sec)	Qp (L/sec)		Qin max.		48hr program	adjustment at			1455	5.1
Uses (160min.crossover O126) as a source value	0.00106	1.0621		0.01021		Min.crossover	Min.crossover			1470	3.7
Do not change	ОК				-	Chart point (min.)	Chart point (min.)	1080min (K2305)	2520min (K5185)	1500	2.4
For calculation purposes this section changes	Dia check	Dia	Area	Qout 1600 (L/sec)	Qout (m^3/sec)	1600	0.91	Qod (L/sec)	Qod (L/sec)	1620	1.2
the dia only and thereby the area	0.0162	0.01618	0.0002	1.048	0.00105	1600	peak flow	0.25711	0.25225	1800	0.6
The information is not used for anything else		16.18		0		23.33	Chart point (max.)	0.00487	Diff. >0 normally	2160	0.3
				size and calc. height		160min. Volume m^3	0.15		-		

late maximum storage volume							Russell				
Chart intensit	, ,	Storm duration-	Storm duration-	Attenuation calc. total	Catchment pre-devel.	CC (x 1.2) Intensity.	Current(0 deg)	CC (x 1.2) Intensity.	Current(0 deg)	CC (x 1.2) Intensity.	Current(0 de
hr value		THR	Event data, TMINS		plus orifice flow out	Post-devel I, (mm/hr)	Pre-devI I, (mm/hr)	Post-devel I, (mm)	Pre-devI I, (mm)	Post-devel I, (mm/hr)	
steps use		(hr)	mins	Qa (L/sec)	Qtin (L/sec)	Current x 1.2	20 yr (current)			100 yr	100 yr
4	720	12.00	720	0.12	0.12	5.6	4.7	21.46	17.88	1.8	1.5
2		6.00	360	0.24	0.24	9.5	7.9	21.02	17.52	3.5	2.9
1	1200	3.00	180	0.46	0.46	15.5	12.9	19.80	16.50	6.6	5.5
	1380	2.00	120	0.92	0.92	24.4	20.3	26.52	22.10	13.3	11.1
	2 1410	0.50	30	1.82	1.82	46.6	38.8	13.08	10.90	26.2	21.8
	1 1425	0.25	15	2.84	2.84	67.0	55.8	10.20	8.50	40.8	34.0
0.		0.08	5	3.97	3.97	93.1	77.6	4.74	3.95	56.9	47.4
0.333		0.08	5	5.30	5.30	111.2	92.7	6.34	5.28	76.1	63.4
0.1666		0.08	5	10.21	10.21	146.4	122.0	12.2	10.2	146.4	122.0
0.1666	5 1445	0.08	5	10.21	10.21	146.4	122.0	12.2	10.2	146.4	122.0
0.333	1450	0.08	5	5.30	5.30	111.2	92.7	6.3	5.3	76.1	63.4
0.	5 1455	0.08	5	3.97	3.97	93.1	77.6	4.7	4.0	56.9	47.4
	1 1470	0.25	15	2.84	2.84	67.0	55.8	10.2	8.5	40.8	34.0
	1500	0.50	30	1.82	1.82	46.6	38.8	13.1	10.9	26.2	21.8
	1620	2.00	120	0.92	0.92	24.4	20.3	26.5	22.1	13.3	11.1
1	1800	3.00	180	0.46	0.46	15.5	12.9	19.8	16.5	6.6	5.5
2	4 2160	6.00	360	0.24	0.24	9.5	7.9	21.0	17.5	3.5	2.9
4	3 2880	12.00	720	0.12	0.12	5.6	4.7	21.5	17.9	1.8	1.5
		48						Sum 48hr depth	Sum 48hr depth	Corr, intensity 160min.	
				Qout max.	Qout max.	Calc. Vstored max.		270.7	225.6	15.4	
Catchment flow Qpat (cell MAX(P109:P130) Qcap max.	Qp (m^3/sec)	Qp (L/sec)	(m^3/sec)	(L/sec)	Vol. stored, (m^3)		Sum 24hr depth	Sum 24hr depth	•	•
Catchment flow = orifice flow out + catchmen	3.150	0.0011	1.1	0.00106	1.06	23.970		227.8	189.8		
pre-development flow	Not used		Suitable 100	yr/secondary outlet flow	w unavailable	ОК		Sum 12hr depth	Sum 12hr depth	_	
For calculation purposes this section change	Dia check	Dia	Area	Tank for 2yr, 10yr & 20	yr flows.	ОК		185.8	154.8		
the dia only and thereby the are	0.0162	0.01618	0.0002	1		overflov	w pipe	Sum 6hr depth	Sum 6hr depth		
The information is not used for anything els		16.18			<u> </u>		mm height	146.2	121.8		
	Use	his orifice size f	or final					Sum 2hr depth	Sum 2hr depth	_	
	design	n, or 10mm dia. ı	ninimum) mm Orf dia	93.1	77.6		
	•				1	2047	mm height	Sum 1hr depth	Sum 1hr depth	_	
								67.0	55.8		
								Sum 0.5hr depth	Sum 0.5hr depth	_	
						10) mm Orf dia	46.6	38.8		
					1		mm height	Sum 0.333hr depth	Sum 0.333hr depth		
							-	37.1	30.9		
								Sum 0.167hr depth	Sum 0.167hr depth	<u></u>	
					150mm	⇒	mm Orf dia	24.4	20.3	7	

Dina calce 10min flow

4200

0.1670 0.1670

Catchment calculations (lowest/final section)

WDC & FNDC EES.	Horton value	Max. distance	Max. height	Slope
	n	L (km)	H (m)	%
	0.045	0.132	37	28.0
FNDC		•		
Overland flow graph, pg158	TC (minutes)			
TC, US Soil	12.59			
_		_	Area of	Q
	I10 (100yr event)	10 min.	catchment	Q100 = C*I10*A/360
I, (Hirds chart)	mm/hr	+ 20% (10 min CC)	A (ha)	(m^3/s)
100yr	159	190.8	0.42	0.1670
Catchment size 420m^2	C (av.)		A (m^2)	(m^3/s)

Calculations for Access culvert on Road (130m)

0.75

Access Channel Area	Use 100% of Q		Longitudinal slope "	s"
	Volume flow m^3/s	Manning coe.	Slo H:V	length
	0.167	0.011	3.64	13
	A x R^0.67	•	Slope %	Depth change
	0.004		27.5	3.57
	Pipe dia.	Check	Q possible	Q percent available
	0.375	ОК	1.0861	650.5
				Min 20% margin
	Water area	Wet perimeter	Hydr Radius	A x R^0.67
	0.110	1.178	0.094	0.023
		CPAA manual fig.3.3		
			.	

Check for head waters 1.81 x Q/D^2.5

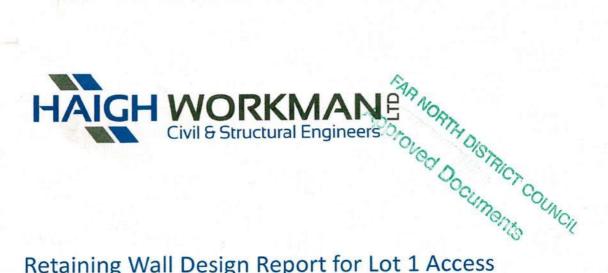
type C soil

	HW/D	Check
3.509	1.600	OK

HW	Confirm heading up
0.600	Inlet Head

OVERLAND FLOW GRAPH

FORMULA
$$t = \frac{107n \frac{3x}{5}}{5\sqrt{8}}$$


Where:-

t = time of travel over surface in minutes n = Horton's values for the surface

4 = length of flow in metres

s = slope of surface In %

Length of over land flow 80m

Retaining Wall Design Report for Lot 1 Access

Lot 2, DP 497245 Flagstaff Road, Russell

for

Waitoto Developments Ltd

Haigh Workman reference 18 260

December 2018

Revision History

Revision Nº	Issued By	Description	Date
A	Wayne Thorburn	Design Report	13 December 2018

Prepared by

Wayne Thorburn

Senior Geotechnical Engineer

CMEngNZ, CPEng

Approved by

John Papesch

Senior Civil Engineer / Director

MEngNZ

TABLE OF CONTENTS

	Revis	ion History		i
1	Intro	oduction		3
	1.1	General		3
	1.2	Scope of Works		3
	1.3	Site Description		3
2	Geo	technical Ground Model and Design Param	eters	4
	2.1	Published Geology		4
	2.2	Visual Inspection		5
	2.3	Site Investigation		5
	2.4	Subsoil Conditions	100	5
	2.5	Geotechnical Ground Model		6
3	Reto	aining Wall Analysis Methodology		6
	3.1	General		6
	3.2	Seismic Design Criteria		7
	3.3	Retaining Wall Design Criteria	¥	7
	3.4	Retaining Wall Design		8
	3.5	Construction Recommendations and Safety in De	sign	9
4	Lim	itations		10
Ар	pendi	ix A – Drawings		11
		ix B – Site Investigation Logs (Hand Auger).		
- 50		ix C – CPT Soundings		
10000000	7.0000000000000000000000000000000000000	ix D – Stability Models		
		ix F – Retaining Wall Calculations		
An	nond	IV F ROTAININA WAII CAICUIATIONS		

TABLES

Table 1 - Geotechnical Design Parameters	6
Table 2 - Retaining wall design criteria	
Table 3 - Retaining Wall Design Summary	
Table 4 - Timber lagging details	9
FIGURES	
Figure 1 – Retaining Wall Location (Lot 1 Access)	3
Figure 2 - Geology Map (1,250,000)	د
Figure 3 – Retaining Wall Methodology (RW02)	8

1 Introduction

1.1 General

Haigh Workman Limited (Haigh Workman) was engaged by Waitoto Developments Ltd (the Client) to design retaining walls to allow safe access into the Lot 1. A retaining wall is required to support an existing cut face, with an in-ground buried wall required to support the accessway from further instability downslope. The approximate location of the retaining walls is shown in Figure 1.

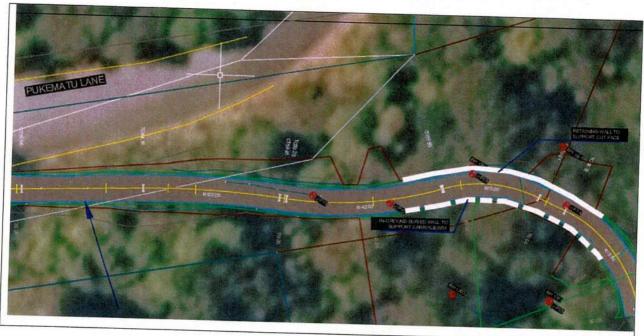


Figure 1 – Retaining Wall Location (Lot 1 Access)

1.2 Scope of Works

The scope of works undertaken to design the retaining wall comprised the following:

- Five CPTs and four hand augered boreholes undertaken by Underground Investigation Ltd;
- Develop a geotechnical ground model for retaining wall design;
- Geotechnical and structural design of a cantilever pole wall;
- Preparation of retaining wall design drawings to accompany consent application.

1.3 Site Description

The site is irregular in plan shape, approximately 3.85 hectares in plan area. North-south ridgelines border the eastern and western boundaries, with site access via a broad spur along the northern boundary at the highest elevation point for the site. The site is generally sloping down towards the south, with natural slope angles up to 30

degrees in areas. Excavations have been undertaken to create accessways, resulting in over-steep cuts (>55 degrees), with fill material placed over the existing slopes in an uncontrolled manner.

2 Geotechnical Ground Model and Design Parameters

2.1 Published Geology

The published geology map of Whangarei (scale 1:250,000, 2009) identifies the site as Waipapa Group (TJw), massive to thin bedded, lithic volcaniclastic metasandstone and argillite.

Further reference to the published soil and rock maps of Bay of Islands (scale 1:100,000, 1981) indicate the basement rock mass is mapped as sandstone and mudstone (greywacke and argillite), fine to medium grained sandstone interbedded with grey to black mudstone and minor siliceous, igneous and calcareous rocks, thinly to thickly bedded with some massive units, closely fractured and veined. Weathered to yellow-brown soft sandy clay to depths of 30 m, well to moderately drained soils.

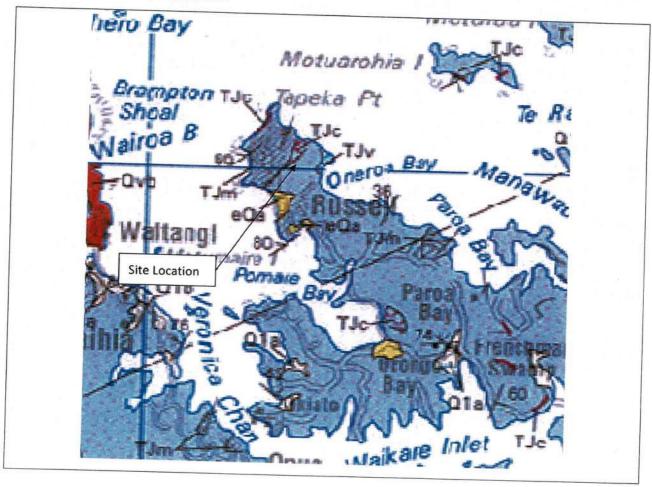


Figure 2 - Geology Map (1,250,000)

2.2 Visual Inspection

Based upon our site inspection and information from geological maps, we consider the subsoils are typically comprised of residual Greywacke rock, comprising very stiff fine-grained soils, i.e. silts and clays. The existing cut face comprised residual soils, which due of the over steepened cut face, show signs of instability at several locations.

Tension cracks were also observed where fill has been placed over the edge of the existing slope faces. Vegetation was also observed within the fill, indicating that fill had been placed in an uncontrolled manner and further instability downslope of the accessway is imminent, and further damage to the accessway is anticipated.

A LIM report has not been sought and is not subject to this review, which would be prudent to obtain for any further information about the area that may be recorded on Councils GIS database which could otherwise cause restrictions or highlight land hazards that may be raised at the time of building development.

2.3 Site Investigation

Site investigations were undertaken by Underground Investigation Ltd on 04 October and 16 October 2018. The investigation comprised the following:

- Four hand augered boreholes to a maximum depth of 3.0 mbgl (BH01 to BH04); and
- Five CPT soundings advanced to a maximum depth of 10.1 m (CPT01 to CPT05).

CPT soundings were undertaken till the anchors pulled out. Underground Investigation Ltd provided a cone penetration rig attached to a remote controlled, rubber tracked machine to test and record ground information. CPT soundings are presented in Appendix C.

Hand auger investigations were logged in accordance with The New Zealand Geotechnical Society, "Guidelines for the Field Classification and Description of Soil and Rock for Engineering Purposes" (2005). A hand shear vane with 19 mm blade was used to measure the Vane Shear Strength of the in-situ material. Readings were taken at the base of the auger hole every 0.5 m of depth. All shear strengths shown on the appended logs are Vane Shear Strengths in accordance with the NZGS; "Test Method for determining the Vane Shear Strength of a Cohesive Soil using a Handheld Shear Vane", 2001.

2.4 Subsoil Conditions

The investigations confirmed the mapped geology with very stiff residual greywacke soils encountered at the surface. A softened zone was encountered across the site, which has been interpreted from the hand augered boreholes and the CPT soundings, a geological cross section has been prepared to present the ground model interpreted from the subsoil investigations.

Ground water level was not encountered during the investigation. Elevated groundwater may be experienced during winter or sustained wet periods. Generally, due to the site topography, rain water will flow overland following the existing site contours. Surface drainage around the proposed wall should be considered to divert any overland flows away from the proposed retaining wall and existing dwelling. For the purposes of design, the groundwater level has been applied to the softer soils observed across the site, coupled with a steady-state flow net to establish the groundwater regime under static conditions. This is shown on the stability models presented within Appendix D.

2.5 Geotechnical Ground Model

A geotechnical ground model was developed from the available site investigation data and is presented in Appendix A.

The geotechnical design parameters recommended in Table 1 are based on the interpretation of the results of the investigations carried out onsite, in-situ test results, empirical relationships, and local experience.

Table 1 - Geotechnical Design Parameters

Material Unit	Unit Weight, γ (kN/m³)	Effective cohesion, c' (kPa)	Effective Friction Angle, φ' (degrees)	Undrained shear strength, S _u (kPa)	Young's Modulus, E'	
Very stiff – Residual Greywacke	18	7	32	150	(MPa) 25	
Softened zone – Greywacke	18	5	30	50 - 100	15	
Completely weathered Greywacke	19	10	34	200	50	
Highly weathered Greywacke	20	50	35	>500	70	
Drainage Metal	20	0	35	-		

3 Retaining Wall Analysis Methodology

3.1 General

A retaining wall is required to support an existing cut face along the proposed accessway into Lot 1, with an in-ground palisade wall required to support the accessway from further downslope failures, and to provide additional shear strength for global stability across the site. A maximum retained height of 3.0 m has been designed for the cut slope wall (RW01), with an allowance for 2.0 m of soil to regress from the downslope palisade wall (RW02). Additional trimming of the cut slope will be undertaken to provide enough drainage media behind RW01, as shown on the appended drawings.

Back analysis of the existing slopes was undertake using limit equilibrium software Slide, using the steady state finite element analysis module to determine the groundwater level. Further stability modelling was undertaken to determine the increase in shear capacity required within the slide mass to achieve a generally accepted factor of safety (FoS) of 1.5 for long-term static conditions.

Deflection limits have been selected based on the wall type and consequence of any lateral movement. For RW01, horizontal deflection at the top of the wall has been limited to 150 mm (under static conditions). RW02 will be supporting the accessway, therefore deflections need to limited to less than 50 mm (under static conditions).

Detailed design has assessed the following failure modes:

Kick-out:

Yielding of structural elements.

The retaining wall is designed using the soil parameters presented in Table 1

3.2 Seismic Design Criteria

For structural design of earth retaining structures, the design horizontal ground acceleration to be used in computing seismic inertia forces is as follows:

$$C_o g = C_h(T_0) Z R_u S_p g$$

- C_h(T₀) = 1.33 (Class C)
- ZRu = 0.13 (minimum value)
- S_p = 0.8 (Class C)

 $C_0g = 0.14 g$

3.3 Retaining Wall Design Criteria

The design criteria for the retaining walls is shown in Table 2.

Table 2 - Retaining wall design criteria

Potoining III II		
Retaining Wall No. RW01	Max. Design Height (m)	Surcharge
RW02	3.0	Sloping ground behind wall (Max. 50 degrees, typical 30 degrees) *
	behind the wall is expected and it	Vehicle surcharge, 10 kPa. Sloping ground in front of wall.

Sloping ground behind the wall is expected erode to some degree. Maintenance may be required to ensure the accessway can be used, i.e. spoil removed.

The design of the retaining walls has been carried out using the methodology suggested by Poulos (1995) and Day (1999) for stabilisation of slope with piles. Poulos suggested an evenly distributed lateral soil pressure diagram behind a pile in an unstable slope. Whereas, Day suggests the design procedures and the allowable spacing for different material type. For the types of soils at this site, residual Greywacke rock, we have adopted a pile spacing of 1.0 m.

The design of the wall was carried out with the following steps according to Day's suggestion for the design of slope stabilisation with piles:

- Carried out slope stability analyses to determine the location and minimum length of the pile to obtain an adequate FoS.
- Carried out slope stability analyses and enforced the slip surface pass through the pile to determine the depth of the failure plane and the minimum shear capacity of the pile.

18 260

7

Input the above information to WALLAP v6.06, using the strength factor method and the 2-D Finite
element model to determine the required embedment depth, internal forces and displacement of the
pile.

As shown in Figure 3, the barrier wall has been assessed for the shear force in the pile estimated at the target FoS in the Slide analysis. To represent this, the shear force estimated to act on the pile is applied as a series of horizontal loads along the length of the pile within the failure surface. The sloping ground has been modelled as negative surcharge.

Seismic conditions were modelled within Slide using undrained soil parameters. The shear reinforcement required by the piles has estimated to provide adequate factors of safety, i.e. greater than 1.0 under ULS conditions. This has been treated as an additional horizontal load to determine the bending moment and shear force requirement of the timber poles.

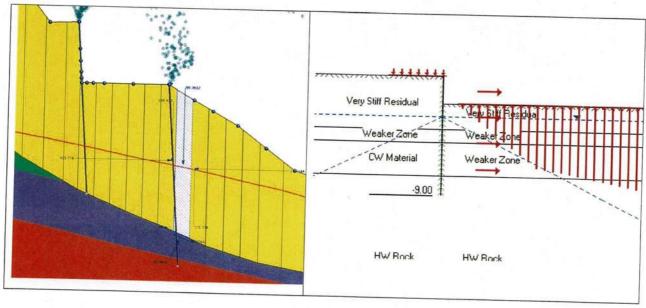


Figure 3 – Retaining Wall Methodology (RW02)

3.4 Retaining Wall Design

8

A summary of the design is presented in Table 3. Design drawings and detailed calculations are provided in Appendix A and Appendix E, respectively. The bending moment and shear force values given below have not been factored as the lateral forces applied to the retaining wall model are taken from the stability model with a factor of safety of 1.5 for global stability.

The retaining wall is composed of <u>high-density</u> timber poles encased in 17.5 MPa of concrete with grade G8 timber horizontal planks, or rough sawn 150 x 50mm H4 treated lagging. Design actions, deflections and length of embedment were derived from the analysis undertaken using Wallap. Drainage must be installed behind the wall, with the drainage pipe outlet located downslope of the retaining wall.

Table 3 - Retaining Wall Design Summary

Wall Properties	RW01 – Cut face					
Max. Retained Height (H)	3.0 m	RW01 downslope – Palisade Wall				
Pile Spacing (c/c)		1.0 m				
Pole type	1.0 m	1.0 m				
	400 mm SED – High Density	400 mm SED – High Density				
Embedment Length (L)	6.0 m	8.0 m				
Total Pile Length (H + L)	9.0 m	9.0 m				
Encasement	17.5 MPa Concrete in a 600 mm diameter augered hole	17.5 MPa Concrete in a 600 mm diameter augered hole				
Bending Moment	133 kNm	34.3 kNm				
Shear Force	90 kN (Slide)	90 kN (Slide)				
Deflection CLS - Damage Control Limit State (NZTA Brid	148 mm (163 mm DCLS seismic loading)	37 mm (42 mm DCLS seismic loading)				

DCLS - Damage Control Limit State (NZTA Bridge Manual, SP/M/022, Third Edition, Amendment 3, October 2018)

Horizontal timber rails between the poles are to span a minimum of two pole spacings. Timber lagging details are provided in Table 4, with depths from top of wall.

Table 4 - Timber lagging details

Single rails (50 mm thick)	Double rails (100 mm thick)	Triple Rails (150 mm thic			
0 to 0.6 m	0.6 to 2.7 m	The transfer of the second sec			
	0.0 to 2.7 m	2.7 to 3.0 m			

3.5 Construction Recommendations and Safety in Design

General

Care should be taken during construction not to induce further instability through removing material from the toe of the slopes. Temporary support will be required if excavations are left open and protection measures, i.e. polyethene sheets on cut face, should be considered to reduce the effects of erosion from adverse weather conditions.

The pile should not be left open for extended periods of time (i.e. overnight) prior to concrete being poured to reduce the likelihood of pile hole collapse.

It is envisaged that the wall will be constructed during the summer months. Groundwater may accumulate in the pile holes during construction and must be pumped out prior to concreting. We recommende pile holes are bored and concrete poured on the same day to reduce the risk of collapse and water ingress.

Provided the construction methodology is continuous and the pile holes are not left open for extended periods, the holes are not expected to require casing. If the ground conditions vary outside those assumed in this report, then the design may need to be changed or altered to ensure adequate performance.

Inspections

During excavation and construction of the proposed walls, the site should be examined by an engineer competent to judge whether the exposed subsoils are compatible with the inferred conditions on which the report has been based. It is important that we be contacted if there is any variation in subsoil conditions from those described in this report.

Inspections of the retaining wall construction is required for a PS4 to be provided by Haigh Workman. Inspections will be required at the following points:

- Bored pile hole inspections at each retaining wall location;
- Inspection of the poles (must be high density poles) before placement;
- Concrete dockets, high density poles, and timber lagging dockets to be provided to Engineer;
- Inspection of the drainage coil and drainage material before it is placed.

All pile holes must be clear of water prior to pouring concrete. The Contractor must have a pump onsite and be ready to pump the holes dry.

4 Limitations

This report has been prepared for the use of Waitoto Developments Ltd with respect to the brief outlined to us. This report is to be used by our Client and their Consultants and may be relied upon when considering geotechnical advice. Furthermore, this report may be utilised in the preparation of building and/or resource consent applications with local authorities. The information and opinions contained within this report shall not be used in other context for any other purpose without prior review and agreement by Haigh Workman Ltd.

The recommendations given in this report are based on site data from discrete locations and prepared specifically for the structures shown on the attached drawings. If any changes are made, we must be allowed to review the new development proposal to ensure that the recommendations of this report remain valid. Inferences about the subsoil conditions away from the test locations have been made but cannot be guaranteed. We have inferred a geotechnical model that can be applied for our analyses. However, variations in ground conditions from those described in this report could exist across the site. Should conditions encountered differ to those outlined in this report we ask that we be given the opportunity to review the continued applicability of our recommendations.

Appendix A - Drawings

Drawing No.	Title	Scale
18 260_GEO	Geotechnical Investigation Plan	1:500
18 260_GEO1	Geological Section – Lot 1 Access	1:200
18 260_2P6	ROWs A& B Retaining Plan	1:250
18 260_2DE1	ROWs A & B Retaining Typical Details	1:50

Appendix B - Site Investigation Logs (Hand Auger)

Borehole Log

BH1

Client	HW - Flagstaff Hill	
Locat	ion Russell	
Projec	ct Proposed Retaining Wall	
Date	16/10/2018	
200		

Date	16/10/2018									
Drilling Method: Hand Auger		r: 50mm	Logged:	CG	Checked:		10)/0-11			
Soil Description	Depth		-	-	-	T-	SV Serial 2422			
	Бери	Legend	Shea	r Strengt	h (kPa)	Moisture	Sample, Othe	r Tests, Remai		
clayey SILT, some sand, light brown /	0.0	lanes.	0 50	100	150 200					
brown, very stiff, moist.	0.0	XXXXXXXX	DESCRIPTION OF THE PARTY OF THE			moist				
		XXXXXXXX								
		XXXXXXXXX								
		XXXXXXXXX					197++			
light brown / greyish white / dark brown	0.5	XXXXXXXXX	•							
	0.0	XXXXXXXXX				24.8	177/27			
		XXXXXXXXX	2000							
		XXXXXXXX		THE PARTY OF						
clayey SILT, whitish grey / reddish dark		XXXXXXXX			100000000000000000000000000000000000000			Ballon Jill		
prown, very stiff, wet.	1.0	XXXXXXXX				wet				
		XXXXXXXX					197++			
		xxxxxxxx								
ome sand 1.3-1.8m		xxxxxxxx								
		xxxxxxxx		Man Section						
	1.5	xxxxxxxx	MARKET DES				107			
		XXXXXXXX					197++			
		XXXXXXXX	Market See	1000						
		XXXXXXXX								
		XXXXXXX			1 100005					
	2.0	XXXXXXXX					197++			
ayey SILT, some sand, reddish brown	,	XXXXXXXX					107			
eyish white / light brown rock matrix	· -	XXXXXXXX								
sible, very stiff, wet		XXXXXXXX								
	2.5	XXXXXXXXX	No.							
	2.0	XXXXXXXXX	100000000000000000000000000000000000000			- (JTP			
		XXXXXXXX								
		XXXXXXXX		NA FEE CO						
		XXXXXXXX		EX PUBLICA						
		XXXXXXXX				- 1	JTP			
DB 3.0m target depth.					Accordance in		JIP			
			A RESIDENCE							
	3.5									
	4.0									
	4.5									
	5.0				0 2 (0) (0) N = 000 = 22					
s Legend			THE PERSON NAMED IN		UB BY					

Topsoil	111111111111111	Fill	///////////////////////////////////////	ACI	T-	
Sand	.0.0.0.0.0.0.0.0				 Silt	XXXXXXXX
Cana	75 SHI CAN THE SA COM	Peat	***************************************	Gravel	Rock	

Borehole Log

BH2

INVEST							9			DITZ
	MOTINE	Client	HW - Fla	agstaff Hill						
		Location	Russell		September 1					
		Project	Propose	d Retaining V	Vall					
Drilling Method:		Date	16/10/20	18						
	Hand Auge	er	Diamete	r: 50mm	Logged:	CG	Checke	ad:	ICV Control	
Soil Des	cription		Depth	Legend					SV Serial	2422
			Dopui	Legend	Sne	ear Strei	ngth (kPa)	Moisture	Sample, Oth	ner Tests, Remarks
TOPSOIL, 50mm, dark	brown mo	iet	0.0		0 50	100	150 2	00		
			0.0	111111111111111111111111111111111111111		SECOND.		moist	the second	
silty CLAY, brown / light	brown, ve	ry stiff,		***************************************						
moist		15 33335			•					
					etalloricas Mantenas			-	154/33	
			0.5							
			_							
									108/11	
			1.0		•					
									177/37	
		1			ALCOHOLD IN			-	127	
clayey SILT, light brown	ligh grev	/ reddish	1.5			Stimes /				
brown, very stiff, wet.	an groy	reduisii	1.5	XXXXXXXX	No.			wet	197++	
		- 1		XXXXXXXXX						
				XXXXXXXX		Market Co.				
				XXXXXXXX	THE REAL PROPERTY.					
		_	2.0	XXXXXXXX					UTP	
				XXXXXXXX		0000			011	
UTP EOB 2.05m.						22000	Carlotte (residential	-		ALL STATE OF THE S
			2.5					-		
						100				
						The last				
			3.0				2011 100000			
			0.0							
										200
			3.5				AND STATE			
		_	\rightarrow							
			4.0							
					TO the Sea					
						No.				316
			15							
			4.5							
						DE PUZZ				
			5.0							
ils I egend					A Committee					

Soils Legend

Topsoil \\\\\\\\\\\		Fill	///////////////////////////////////////	1Class	 		
Sand	.0.0.0.0.0.0.0		Titili ilii	Clay	 Silt	XXXXXXXX	
		reat	**************	Gravel	Rock	A A A A	

Borehole Log

BH3

INV	ESTIGATION	Client	HW - Flag	staff Hill					-		
		Location	Russell								
1		Project	Proposed	Retaining V	Vall						
Deillian Matter I		Date	16/10/201	8			-				
Drilling Method:	Hand Aug	er	Diameter:	50mm	Logged	: CG		Checked		101/0-11	
Soil	Description		Depth	Legend		hear St			Moisture	SV Serial Sample, Ot	2422 her Tests, Remark
TOPSOIL, 250mm	, dark brown, w	/et.	0.0	\\\\\\\	0	50	100	150 200		114 4	
									wet		
silty CLAY, some g	ravel, yellowish	brown /								Landa de la companya del companya de la companya del companya de la companya de l	
brown / reddish browet.	wn (gravel), ve	ery stiff,	0.5								
			0.0							176/64	
silty CLAY, light bro	nam / readdish to										
white, very stiff, wet		rown /	1.0				•				
	<u></u>									112/54	
		t	1.5			•		•		150/54	
		H						F		159/54	
			2.0							104/50	
										104/52	
			-								
			2.5			•				104/68	
		H								104/06	
		F	-								
			3.0 -		•		-			1	17/05
DB 3.0m tareget de	oth.				District in		No. of the last of				17/35
			3.5								
			4.0								
			4.5								
							20				
			5.0	100							
s Legend	- "			<u> </u>			244				
	Copsoil \\\\\\ Sand .0.0.0.	\\\\\\\\ Fill	1////	/////////////////////Clay	-		Silt		xxxxxx		
Ľ			ı. :::::	:::::::::: Grav	vel		Roo	ck A	222		

Borehole Log

BH4

	IVESTIGATIO		Client	H	N - Fla	gstaff H	ill									דווט
			Locat	ion Ru	issell		-					_				
			Projec			Retain	ing W	all			_					
			Date		/10/201	18	ing iv	un .								
Drilling Method:	Hand A	Auge				50mm	1	Logge	od: C	20	_	01				
Sc	oil Description						$\overline{}$			G			cked:		SV Serial	2422
	on Description	LL:		- 1 '	Depth	Lege	end		Shear	Stren	gth (I	kPa)		Moisture	Sample, Of	her Tests, Remark
cilty CLAY								0	50	100	1	50	200			nor rests, remark
silty CLAY, yellov stiff, wet.	wish brown /	brow	n, ver	y	0.0						ALC: N	10500	100	wet		
oun, wet.												Test.		WC.		
some sandy grav	el (brown) 0	3m -	1 2m	-												
	(4.0) 0.	0111 -	1.5111		-			1000				Real Property			140/65	
					0.5			100				10000				
												1650			197++	
												1000 B	100			
100								Voya,								
					1.0						200					
					1.0										195/97	
										Line See						
silty CLAY, yellow	rish brown / g	reyis	h whit	e,												
very stiff, wet.																
					1.5				1						197++	
															19777	
				-	-		=									
					-					经 图图						
				2	2.0		= /									
											Section 1				197++	
/ reddish brown of	ilt foostiss !		• ****										H			
/ reddish brown, si	iit fraction inc	reas	ing								JE C		ı t			
				2	.5 -		=					SPI .				
					.5		=								185/117	
					-							300	H F			
					-		= 1		1000000				H F			
					-		$\equiv 1$						l F			
		20.00		3.	0 -		=		1						97++	
OB 3.0m target de	epth.							N. Contract		-		and the same				
							- 8		No. Sec.				1			
													1			
				3.	5								1 -			
				_						No.			1 +			
				+	_						0 2					
				1	-		_ [Serie in	2000			ΙE			
				4.0		_	- ·	Harris I				2	<u> </u>			
							- 6	1000 C				9/10	1			
										250	1 25		-			
											100		-			
				1.					Barrie	No the		V.				
1111				4.5												
					_		- 20		Car Car	teles lie		7 39				
									PRE CON				-			
										100	E ROA		-			
				5.0								Lane and the second	-			
Is Legend							100			Star S			-			
	Topsoil	1111111	WWW	Fill	1111	1111111111111	do									
	Sand	.0.0.0.0	.0.0.0.0	Pest	- 1///	///////////////////////////////////////					Silt		XXX	XXXXX		
				Cat	*****		Grav	el	11 1		Rock	Κ .		444		

Appendix C - CPT Soundings

Test Hole Number

Test Date

CPT Rig Type

Cone Serial Number

Start Recording

Pre Drill Depth

Data Interval

Date of Last Calibration

CPT01	Job Identifier	HW Flagstaff
4/10/2018	Operator	Craig Greenfield
Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
4595	Battery Voltage Start	6.42
10:38:00 AM	Finish Recording	11:05:00 AM
NA	Ground Water Depth	
10mm	Total Penetration Depth (m)	9.325
	Metres To Next Calibration	312
	Test ended due to:	Anchor Failure

		rest ended due to:	Anchor Failure
	Zono Valuo G	10ng % F80	
_	Point Resistance	Pore Pressure	Sleeve Friction
End of test with tip loosened	0.05%	0.12%	0.04%
144 M	Dissipute	n Teeling	
Test No	Depth (m)	Duration (secs)	Comments
			8
s loss (t	දුකුසා යාල් (EMMONES	
ta loss (typically at rod ange points). Either deleted averaged	qc 0.52 1.53 2.53 3.53-3.54 7.54 8.53	fs 0.52 2.53-2.54 4.54 6.54 7.54	u 0.53 4.53-4.54 5.54 6.54 7.17-7.18 7.54

Test Hole Number

Test Date

CPT Rig Type

Cone Serial Number

Start Recording

Pre Drill Depth

Data Interval

Date of Last Calibration

CPT02
4/10/2018
Georig 220 with Screw Anchors
5233
11:47:00 AM
NA
10mm

Job Identifier

Operator

Craig Greenfield

Cone Type

Nova Cone 100MPa

Battery Voltage Start

Finish Recording

Ground Water Depth

Total Penetration Depth (m)

Test ended due to:

HW Flagstaff

Craig Greenfield

Nova Cone 100MPa

12:07:00 PM

7.55

1150

anchor failure

		Test ended due to:	anchor failure
	Zano Valuo @	TEMPO STEED	
	Point Resistance	Pore Pressure	Sleeve Friction
End of test with tip loosened	0.01%	0.04%	0.10%
	Dissiprife	odieo o	
Test No	Depth (m)	Duration (secs)	Comments
	Note and (20000000	
ata loss corrected (typically at rod change points). Either	qc	fs	
deleted or averaged	0.54	2.54	u 2.54
	2.54-2.55	3.87	5.54
	3.55	5.55	6.55
	4.53-4.54	6.55	3.00
	5.55	and the second s	
	6.55		*

Test Hole Number

Test Date

CPT Rig Type

Cone Serial Number

Start Recording

Pre Drill Depth

Data Interval

Date of Last Calibration

_		
	CPT03	
	4/10/2018	
Geori	g 220 with Screw	Anchors
	4595	
	1:31:00 PM	X = 17 = 1
ži	NA	
	10mm	

Job Identifier

Operator

Craig Greenfield

Cone Type

Nova Cone 100MPa

Battery Voltage Start

Finish Recording

Ground Water Depth

Total Penetration Depth (m)

Metres To Next Calibration

HW Flagstaff

Craig Greenfield

Nova Cone 100MPa

1:49:00 PM

5.98

Test ended due to: anchor failure Zoro Value Change % FSO Point Resistance Pore Pressure Sleeve Friction End of test with tip loosened 0.02% 0.26% 0.00% Dissipation Tasting Test No Depth (m) Duration (secs) Comments Commod Commons Data loss (typically at rod qc change points). Either deleted fs u 0.56-0.57 or averaged 0.56 0.55 1.56 3.55 2.56 3.56 4.54-4.55

Test Hole Number

Test Date

CPT Rig Type

Cone Serial Number

Start Recording

Pre Drill Depth

Data Interval

Date of Last Calibration

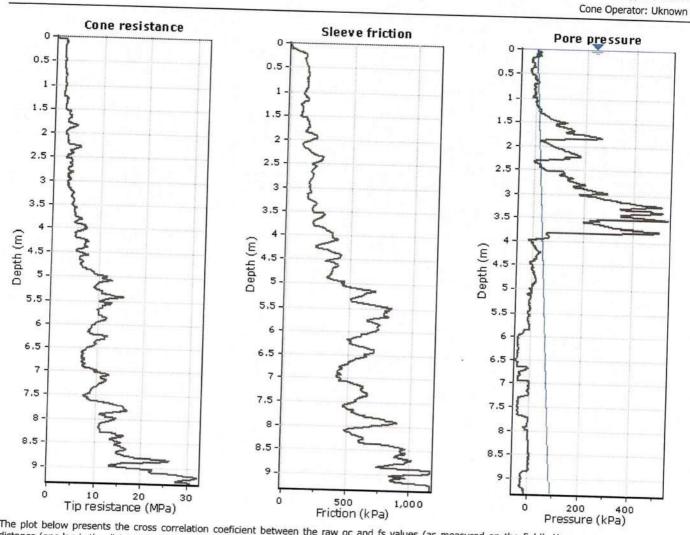
CPT04	0
4/10/2018	
Georig 220 with Screw Anchor	s
5233	
2:48:00 PM	1
NA	
10mm	1
	1
,	

Job Identifier HW Flagstaff Operator Craig Greenfield Cone Type Nova Cone 100MPa Battery Voltage Start 6.55 Finish Recording 3:15:00 PM **Ground Water Depth** Total Penetration Depth (m) 10.09 Metres To Next Calibration 1142

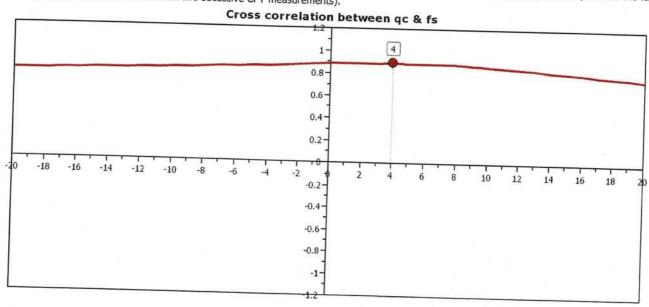
		Test ended due to:	Anchor falure
	Zoro Valuo G	hango %FSO	
	Point Resistance	Pore Pressure	Sleeve Friction
End of test with tip loosened	0.08%	0.02%	0.02%
	<u>Dissiprific</u>	n Tealig	
Test No	Depth (m)	Duration (secs)	Comments
	Notes and (2000000	
ange points). Either deleted averaged	qc 0.45-0.46 1.45 2.46 2.45-2.46 5.46 7.46 8.47 9.47-9.48	fs 0.45 1.45-1.46 2.46 4.46 8.47 9.47	u 3.46-3.47 4.46 5.48-5.49

Test Hole Number
Test Date
CPT Rig Type
Cone Serial Number
Start Recording
Pre Drill Depth
Data Interval
Date of Last Calibration

CPT05	Job Identifier	HW Flagstaff Craig Greenfield	
4/10/2018	Operator		
Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa	
4595	Battery Voltage Start	6.42	
3:56:00 PM	Finish Recording	4:17:00 PM	
NA	Ground Water Depth	A GARAGER SON	
10mm	Total Penetration Depth (m)	6.98	
	Metres To Next Calibration	297	
	Test ended due to:		


		Test ended due to:	anchor failure	
	Zaro Valuo G	imps:500		
- · · · · · · · · · · · · · · · · · · ·	Point Resistance	Pore Pressure	Sleeve Friction	
End of test with tip loosened	0.04%	0.05%	0.00%	
Total No.	Phalpale	n legjill	- w	
Test No	Depth (m)	Duration (secs)	Comments	
	*			
ata loss corrected (typically at	ගින්න කාල් (fs fs		
rod change points). Either deleted or averaged	0.55	0.55-0.56	u 0.19	
	1.55	1.55-1.56	2.55-2.56	

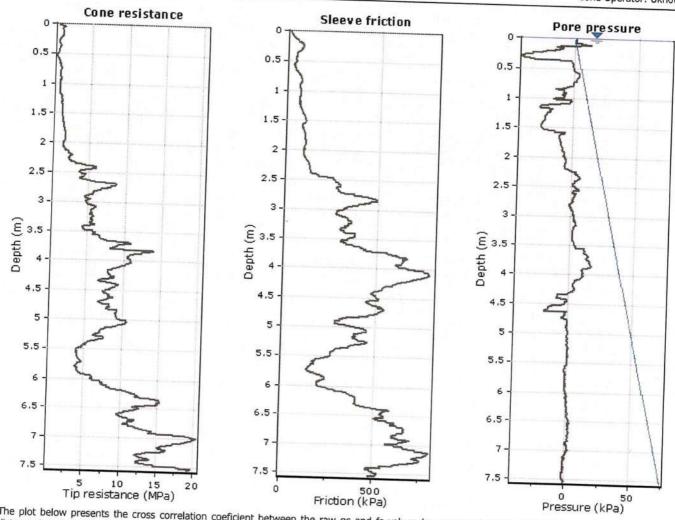
Data loss corrected (typically at	الكافعة	e Gentullite	
rod change points). Either	qc	fs	
deleted or averaged	0.55	0.55-0.56	u 0.10
	1.55	1.55-1.56	0.19
	2.55	2.55-2.56	2.55-2.56
	4.56		3.56
		6.56	4.56
	5.56		5.56-5.57
	6.56		

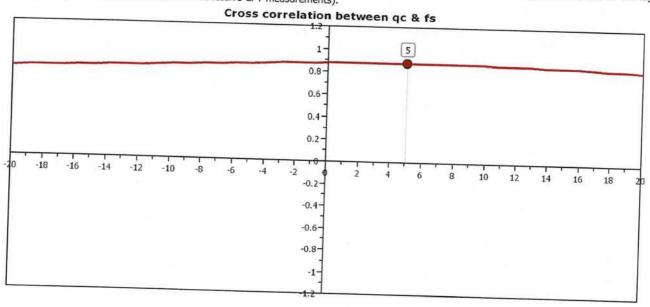


Total depth: 9.32 m, Date: 9/10/2018 Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00 Cone Type: Uknown

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).

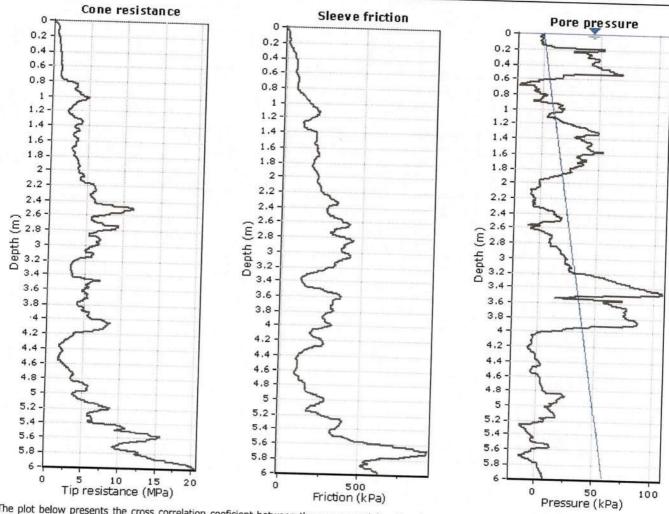



Total depth: 7.55 m, Date: 9/10/2018

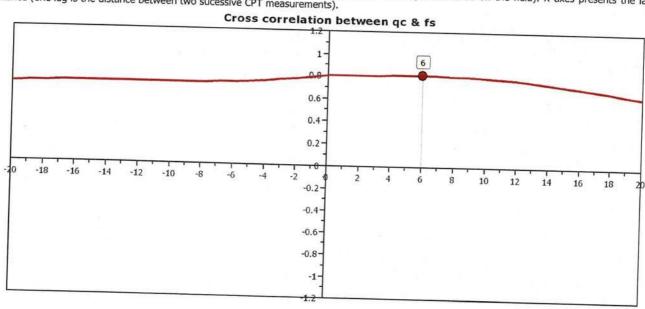
Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00

Cone Type: Uknown Cone Operator: Uknown

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).



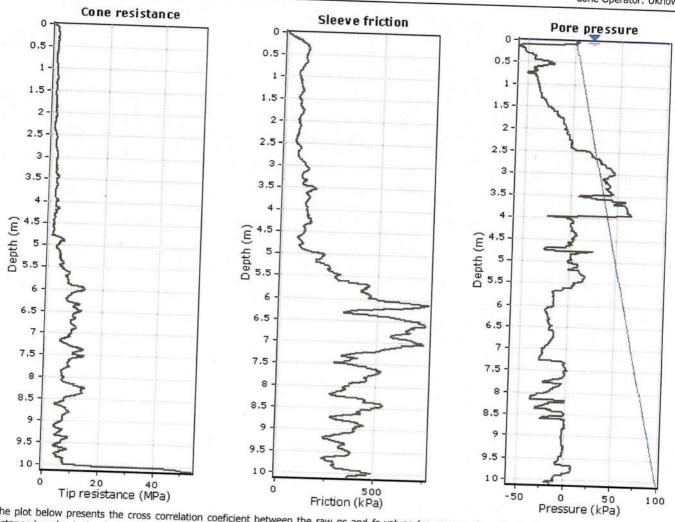
Total depth: 5.98 m, Date: 9/10/2018

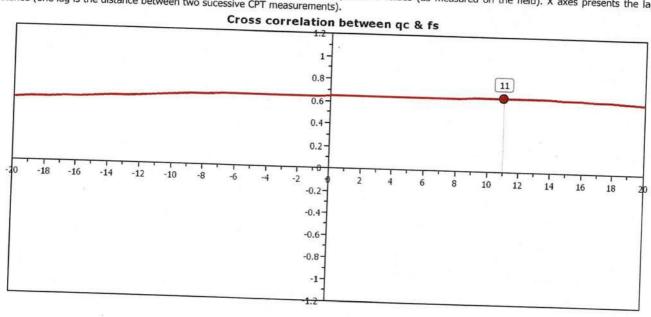

Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00

Cone Type: Uknown

Cone Operator: Uknown

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).

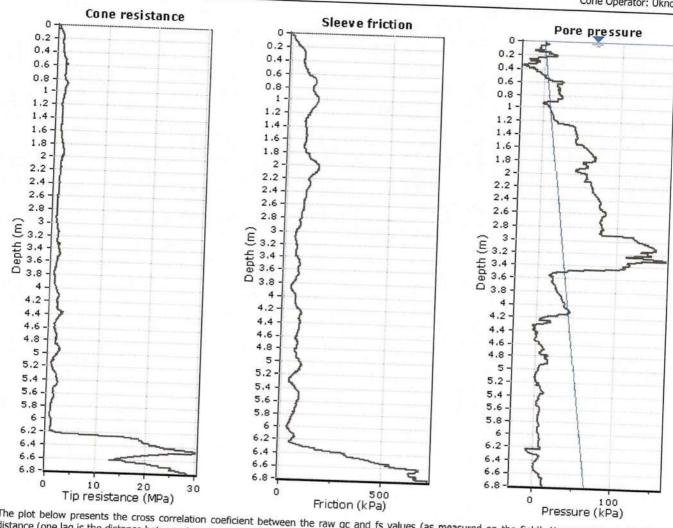


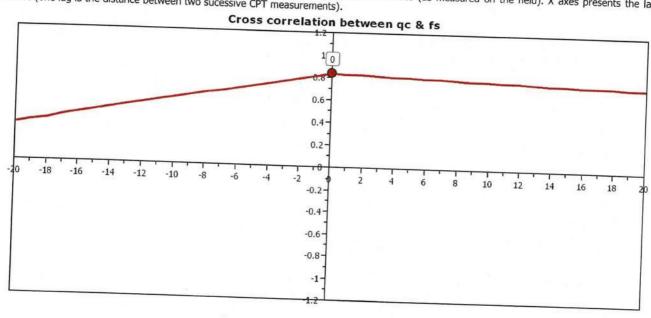

Total depth: 10.09 m, Date: 9/10/2018

Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00

Cone Type: Uknown Cone Operator: Uknown

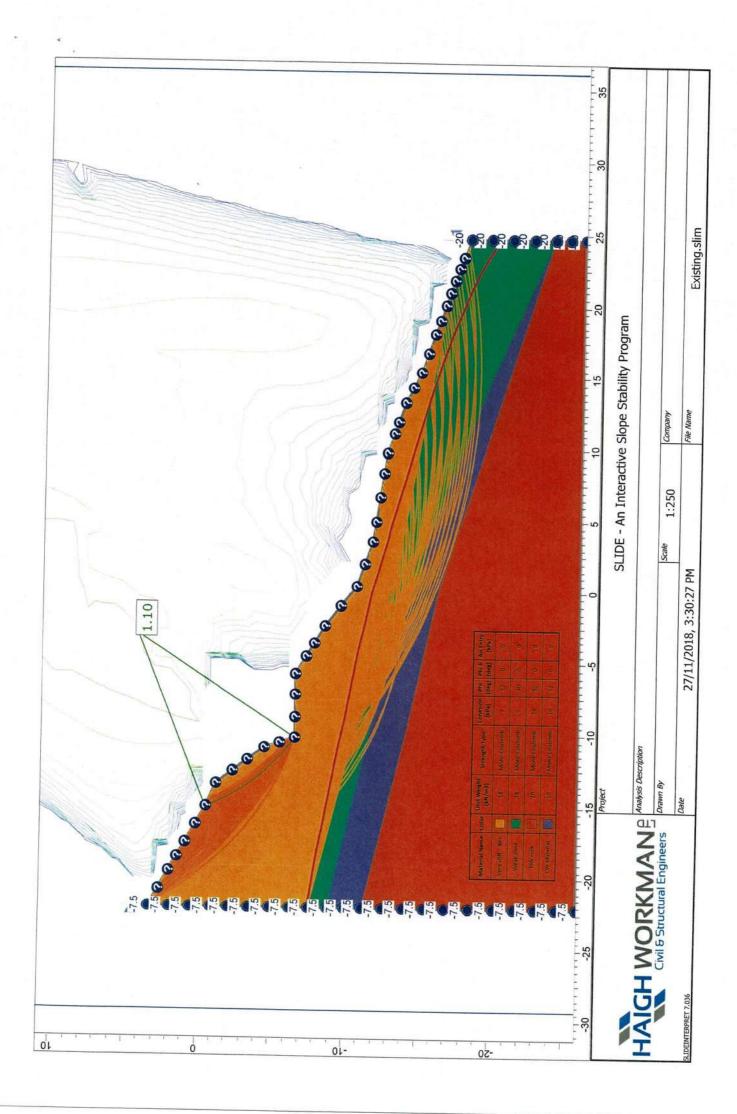
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).

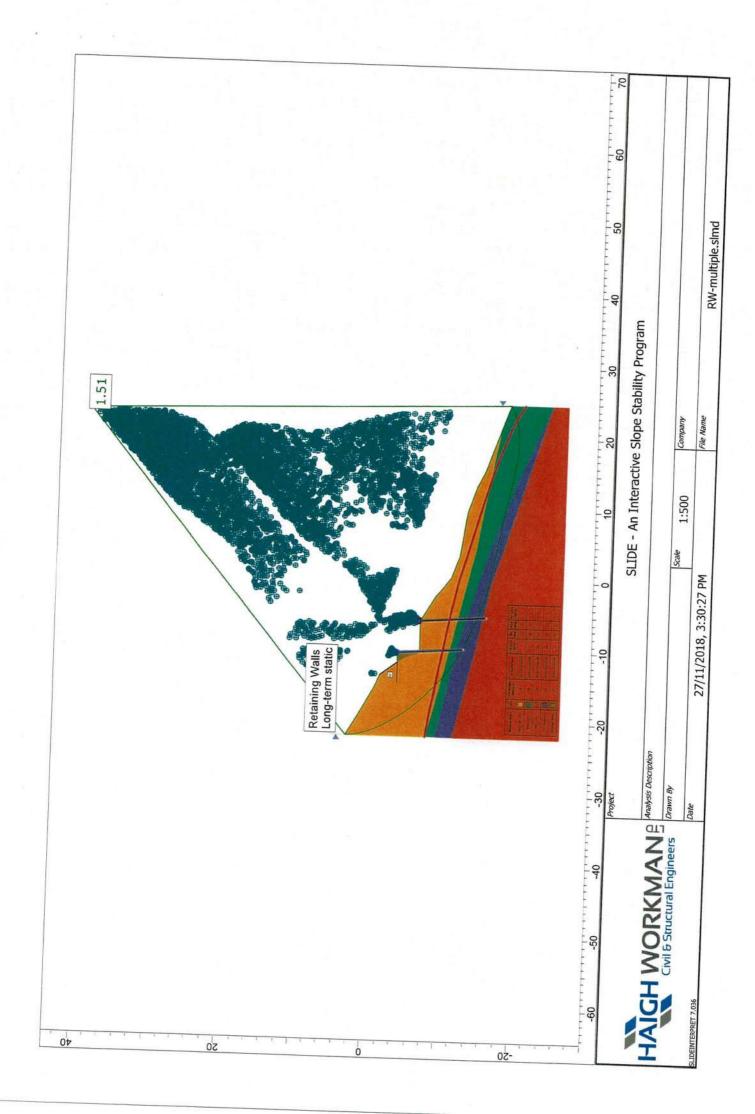


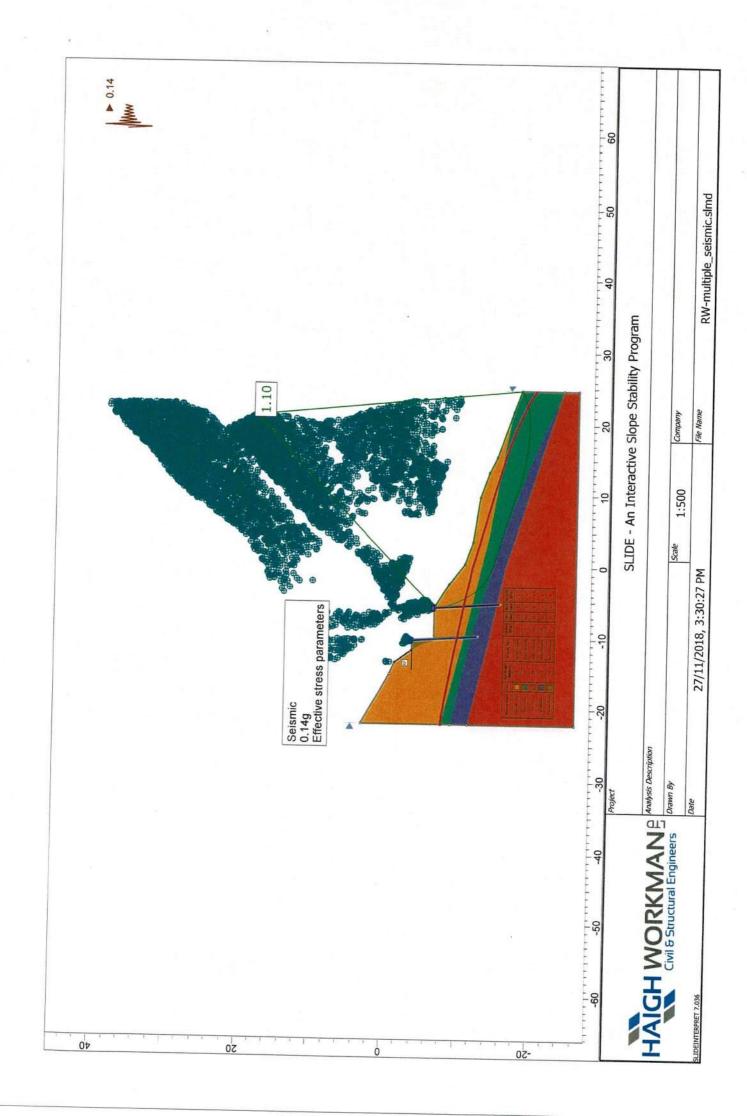

Total depth: 6.79 m, Date: 9/10/2018

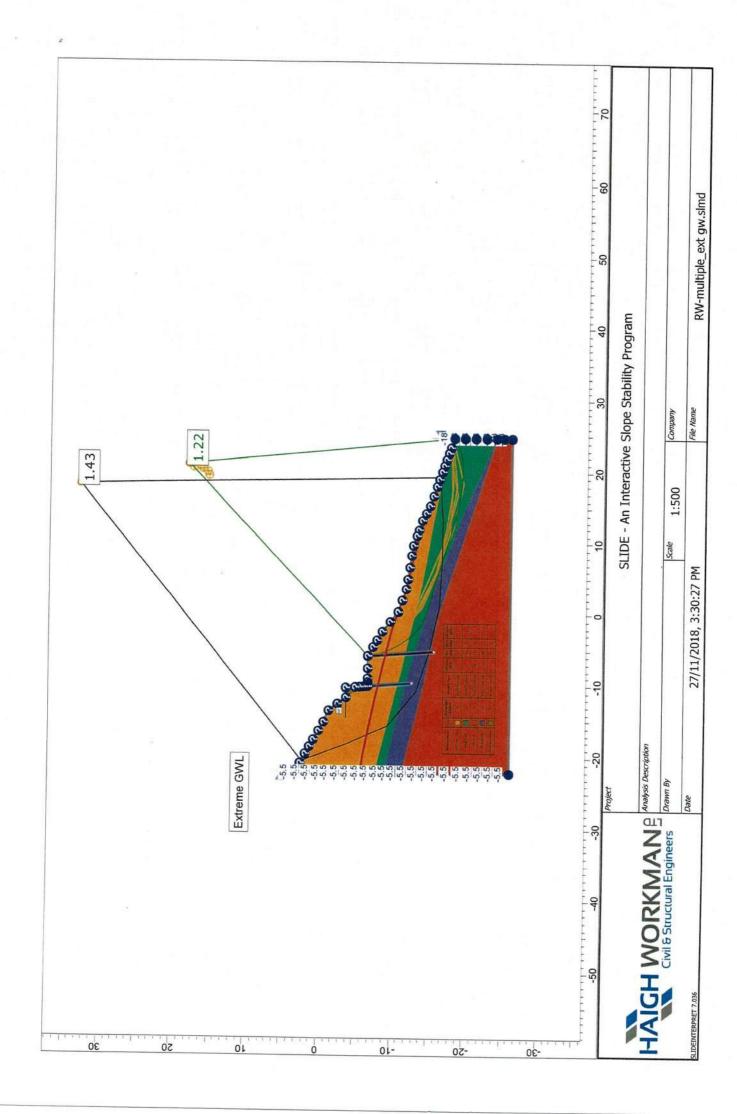
Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00

Cone Type: Uknown Cone Operator: Uknown




The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).





Appendix D - Stability Models

Appendix E - Retaining Wall Calculations

Project Name:

Flagstaff Hill

Subject:

Input parameters for Wallap

Job No.: 18 260

Doc No.:

By: Wayne Thorburn Verified By:

Date:

Material Pro	operties for Timber Pol	<u>e</u> 1.21E+07
E=	12.10 GPa 1.21E+07 kPa	(Young Modulus) [MGS8, NZS3603 Amendement 4, Table 2.3]
ρ = S =	450 kg/m ³ 1 m c/c	(Density) (Spacing between piles) 0.400 m φ
A = I =	0.126 m ² 1.25664E-03 m ⁴	(Sectional Area) (Area Moment of Inertia) per pile
EA = EI = w =	1.521E+06 kN/m = [k 15205.31 kNm ² /m = 0.555 kN/m/m =	$(N/m^2)[m^2]/[m]$
I El	1.257E-03 m ⁴ /m 15205.31 kNm ² /m =	per unit length of wall

HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53 | Sheet No. I Job No. Licensed from GEOSOLVE Data filename/Run ID: Wallap_slide_seismic Made by : Flagstaff Hill Retaining Wall Check | Date:13-12-2018 Checked: INPUT DATA Units: kN, m SOIL PROFILE Stratum Elevation of ----- Soil types ----top of stratum Left side no. 1 0.00 1 Very Stiff Residual Right side 2 Weaker Zone 2 Weaker Zone 2 Weaker Zone -4.00 3 -5.00 4 CW Material 3 HW Rock 4 -7.50 3 HW Rock SOIL PROPERTIES Bulk Young's At rest Consol Active Passive -- Soil type -- density Modulus No. Description kN/m3 Eh,kN/m2 coeff. state. limit limit Cohesion Ko (Datum elev.) NC/OC Ka (dEh/dy) (dKo/dy) (Nu) (Kac) (Kpc) (dc/dy) 25000 0.470 OC 0.259 4.236 7.000d 1 Very Stiff 18.00 Residual 7.000d (0.350) (1.185) (5.179) 2 Weaker Zone 18.00 15000 0.500 OC 0.284 OC 0.284 3.878 (0.350) (1.240) (4.985) 5.0000 3 HW Rock 20.00 70000 0.430 oc 0.229 5.153 50.00d (0.350) (1.101) (5.931) 4 CW Material 19.00 50000 0.440 OC 0.240 4.858 10.00d (0.350) (1.127) (5.719) Additional soil parameters associated with Ka and Kp Parameters for Ka --- parameters for Kp --Soil Wall Back- Soil Wall BackNo. Description angle coeff. angle angle coeff. angle
1 Very Stiff Residual 32.00 0.670 0.00 32.00 0.271 0.00
2 Weaker Zone 30.00 0.660 0.00 30.00 0.302 0.00 0.670 0.00 32.00 0.271 0.660 0.00 30.00 0.302 0.609 0.00 35.00 0.292 0.612 0.00 34.00 0.294 4 CW Material 0.00 34.00 0.00 GROUND WATER CONDITIONS Density of water = 10.00 kN/m3Left side Right side

Initial water table elevation -10.00

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Soldier Pile Wall

Soldier Pile width = 0.40 m Soldier Pile spacing = 1.00 m

Passive mobilisation factor = 3.00

Elevation of toe of wall = -5.50Maximum finite element length = 0.40 m

Youngs modulus of wall E = 1.2100E+07 kN/m2 Moment of inertia of wall I = 1.2570E-03 m4/m run

= 1.2570E-03 m4 per pile

E.I = 15210 kN.m2/m run

Yield Moment of wall = Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Load no.	Elevation	Horizontal load	Moment load	Moment restraint	Partial factor
1	3.00	kN/m run 30.00	kN.m/m run 0	kN.m/m/rad	(Category)
2	0.00 -3.00	30.00	0	ő	N/A N/A
4	3.00	30.00 2.000	0	0	N/A
5 6	0.00 -3.00	2.000	ō	o	N/A N/A
	-3.00	2.000	0	0	N/A

SURCHARGE LOADS

Surch -arge no.	Elev.	Distance from wall	Length parallel to wall	Width perpend. to wall	1771/	m2	soil	Partial factor/
1 2	0.00	0.00(L) 3.40(L)	30.00	3.20 6.80	Near edge 54.00 91.20	91.20	N/A	Category N/A
3 4	0.00	-3.90(R) -13.60(R)		9.70 27.70	0.00	161.20 -96.84 -187.00	N/A N/A N/A	N/A N/A N/A

Note: L = Left side, R = Right side

A trapezoidal surcharge is defined by two values:

N = at edge near to wall, F = at edge far from wall

CONSTRUCTION STAGES

Construction stage no.	Stage description
1 2 3 4 5	Apply surcharge no.1 at elevation 0.00 Apply surcharge no.2 at elevation 0.00 Apply surcharge no.3 at elevation 0.00 Apply surcharge no.4 at elevation 0.00 Change EI of wall to 15210 kN.m2/m run Yield moment not defined
6 7 8 9 10	Reset wall displacements to zero at this stage Apply load no.1 at elevation 3.00 Apply load no.2 at elevation 0.00 Apply load no.3 at elevation -3.00 Apply load no.4 at elevation 3.00 Apply load no.5 at elevation 0.00 Apply load no.6 at elevation -3.00

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis:

Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.50

Parameters for undrained strata:

Minimum equivalent fluid density Maximum depth of water filled tension crack = 5.00 kN/m3 0.00 m

Bending moment and displacement calculation:

Method - 2-D finite element model

Open Tension Crack analysis? - No

Soil arching modelled? - No Non-linear Modulus Parameter (L) = 0 m

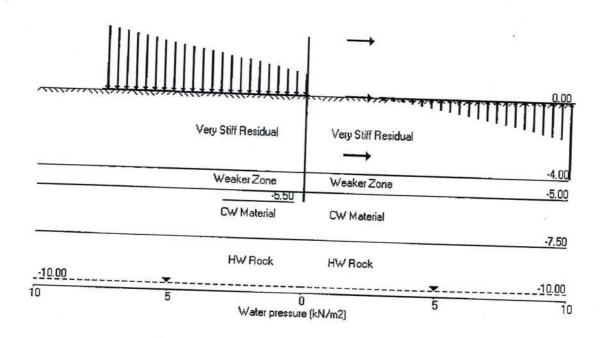
Boundary conditions:

Length of wall (normal to plane of analysis) = 52.00 m

Width of excavation on Left side of wall = 20.00 mWidth of excavation on Right side of wall = 50.00 m

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = -10.00

Lower rigid boundary at elevation -10.00 - Smooth Rigid boundary on Left side - Smooth Rigid boundary on Right side


- Smooth Wall / soil interface - Rough

OUTPUT OPTIONS

Stage Stage descriptionno.	Displacement Bending mom. Shear force	Active, Passive	Graph.
Apply surcharge no.1 at elev. 0.00 Apply surcharge no.2 at elev. 0.00 Apply surcharge no.3 at elev. 0.00 Apply surcharge no.4 at elev. 0.00 Change EI of wall to 15210kN.m2/m run Apply load no.1 at elev. 3.00 Apply load no.2 at elev. 0.00 Apply load no.3 at elev3.00	No No No No No No No	Pressures No No No No No No No No No	No No No No No
9 Apply load no.4 at elev. 3.00 10 Apply load no.5 at elev. 0.00 11 Apply load no.6 at elev3.00 * Summary output	No No No Yes	No No No	No No No No

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53	Sheet No. Job No.
Data filename/Run ID: Wallap_slide_seismic Flagstaff Hill	Made by : WT
Retaining Wall Check	Date:13-12-2018
	Checked :

HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53 | Sheet No. I Job No. Licensed from GEOSOLVE Data filename/Run ID: Wallap_slide_seismic | Made by : Flagstaff Hill Retaining Wall Check | Date:13-12-2018 Checked:

Units: kN,m

Stage No. 11 Apply load no.6 at elevation -3.00

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

Stage	G.L			FoS for toe elev. = -5.50		Toe elev. for FoS = 1.500		
No.	Act.	Pass.	Strut Elev.	Factor of	Moment equilib.	Toe elev.	Wall Penetr	Direction
11	0.00	0.00	Cant.	Safety 1.849	at elev. -5.01	-4.31	-ation	of failure

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.40m; spacing = 1.00m Passive mobilisation factor = 3.000

·Length of wall perpendicular to section = 52.00m

2-D finite element model. Soil arching not modelled.

Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Lower rigid boundary at elevation -10.00 Smooth boundary Smooth boundary

*** Wall displacements reset to zero at stage 5

				4,	- Brage 5		
Node no.		Nett pressure	Wall	Wall	Shear	Bending	Strut
		kN/m2	disp.		force	moment	forces
1	3.00		m	rad.	kN/m	kN.m/m	
2	2.70	0.00	0.163	3.59E-02	32.0	-0.0	kN/m
2	2.40	0.00	0.153	3.58E-02	32.0	9.6	-32.0
1		0.00	0.142	3.55E-02	32.0	19.2	
4 5	2.00	0.00	0.128	3.48E-02	32.0	32.0	
6	1.60	0.00	0.114	3.38E-02	32.0		
7	1.20	0.00	0.101	3.25E-02	32.0	44.8	
	0.80	0.00	0.088	3.08E-02	32.0	57.6	
8 9	0.40	0.00	0.076	2.88E-02		70.4	
9	0.00	0.00	0.065	2.64E-02	32.0	83.2	
534		-30.48	0.065	2.64E-02	32.0	96.0	-32.0
10	-0.40	-58.37	0.055	2.35E-02	64.0	96.0	
11	-0.80	-86.03	0.046	2.02E-02	46.2	119.2	
12	-1.20	-97.06	0.039	1.66E-02	17.4	133.1	
13	-1.60	-48.67	0.033		-19.3	133.2	
14	-2.00	-16.90	0.028	1.32E-02	-48.4	117.7	
15	-2.40	3.50	0.024	1.04E-02	-61.5	94.5	
16	-2.70	9.53	0.024	8.16E-03	-64.2	68.6	
17	-3.00	10.44		6.91E-03	-62.3	49.5	
		10.44	0.020	6.02E-03	-59.3	31.3	-32.0
18	-3.30	12.44	0.020	6.02E-03	-27.3	31.3	52.0
19	-3.60	18.24	0.019	5.38E-03	-23.8	23.6	
20	-4.00		0.017	4.86E-03	-19.2	17.0	
	4.00	31.11	0.015	4.31E-03	-9.4	10.8	
21	-4.40	35.79	0.015	4.31E-03	-9.4	10.8	
22		10.51	0.014	3.86E-03	-0.1		
23	-4.70	-2.84	0.012	3.55E-03	1.1	9.9	
23	-5.00	-23.75	0.011	3.29E-03	-2.9	10.4	
24	- 0-	-122.18	0.011	3.29E-03	-2.9	10.6	
24	-5.25	-23.96	0.011	3.15E-03	-21.2	10.6	
25	-5.50	138.26	0.010	3.11E-03		6.0	
			ACMONIONEMENT	0.110-03	-6.9	-0.0	

| Sheet No. | Date:13-12-2018 | Checked :

	St	age No.	ll Appl	y load n	no.6 at el	-3.00	(continued)			
	Noc	10 mm								
		-			Wall	Wall	Shear	Dand:	22	
	110	. cooi	rd pres	sure (disp.	rotation		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Strut	
				N/m2	m	rad.	TOLCE	moment	forces	
	26		50 -	0.49	0.010		kN/m	kN.m/m	kN/m	
	27			0.09	0.009	0	-0.0	0.0		
	28	-7.5	0 6	9.19	0.009	0	-0.2	0.0		
				5.95		0	4.2	0.0		
	29	-8.7		0.11	0.008	0	4.2	0.0		
	30			0.02	0.008	0	-0.1	0.0		
		20.0		0.02	0.008	0	0.0	0.0		
	Nod	е у					¥.	0.0		
	no	,				LEFT	r side			
	110	. coor			Effect	TWE stran	stae			
			Water	VELLI	c Active	Passiv	e Earth		Adjusted	
			press	· -al	limit		pressure		soil	
		201028	kN/m		12 kN/m2	kN/n			e modulus	
	1	3.00		0.0	0.00		No. of the second second	1111/1112		
	2	2.70	0.0					0.00	0.0	
	3	2.40	0.0			0.0	0.00	0.00	0.0	
	4	2.00						0.00		
	5	1.60	0.00					0.00		
	6	1.20					0.00	0.00		
	7	0.80					0.00	0.00		
	8	0.40		: 기가 자꾸 의 중시			0.00	0.00	370.5.5	
	9	0.00				0.0	0.00	0.00		
	0.00	0.00				0.0	0.00	0.00		
	10	-0.40	0.00		5.72	264.9	9 5.74			
	11	-0.80				307.93	8.35	5.74		
	12			74.16	10.95	350.38	10.95	8.35	24930	
		-1.20		83.98	13 50	391.98	13.50	10.95a		
	13	-1.60		93.57	15.98	432.60		13.50a		
	14	-2.00	0.00	102.93		472.26		15.98a		
	15	-2.40	0.00	112.09	20.79	511.05		26.26	24930	
	16	-2.70	0.00	118.83	22.54	F 2 2 4 4		40.23	24930	
	17	-3.00	0.00	125.47	24.26	539.62 567.74		46.01	24930	
	18	-3.30	0.00	132.01	25.96	567.74	49.19	49.19	24930	
	19	-3.60	0.00	138.44		595.43	52.87 58.41	52.87	24930	
	20	-4.00	0.00	146.85		622.68	58.41	58.41	24930	
			0.00	146.85		658.32		68.29	24930	
	21	-4.40	0.00			594.42		72.79	14958	
	22	-4.70	0.00	155.08		626.31	63.75	63.75	14958	
	23	-5.00	0.00	161.11		649.72	59.72	59.72		
		0.00			41.21	672.71	51.89	51.89	14958	
	24	-5.25	0.00	167.04	28.79	868.61	28.79	28.79a	14958	
	25		0.00	172.15	30.01	893.41	48.38	48.38	49860	
	26	-5.50	0.00	177.18	31.22	917.85	148.75	140.38	49860	
	27	-5.60	0.00	179.17	31.70	927.52	62.86	148.75	49860	
		-6.55	0.00	197.52	36.10	1016.66	70.43	62.86	49860	
	28	-7.50	0.00	214.94	40.28	1101.28		70.43	49860	
	2020		0.00	214.94	0.00	1404.18	82.02	82.02	49860	
	29	-8.75	0.00	237.97	0.00	1522.85	72.58	72.58	69804	
	30 -	-10.00	0.00	260.06	4.62	1626.60	85.42	85.42	69804	
				10105050111111050	1.02	1636.68	94.52	94.52	69804	
									Laindive Centre	
N	ode	Y								
3	no.	coord				RIGHT s	ide			
			Water	Vort !	Effective	stresse	s	Total	Adjusted	
				AGILLIC	Active	Passive	Earth	earth		
			press.	-al	limit	limit	pressure	pressure	soil	
	1	3.00	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	modulus	
	2	2.70	0.00	0.00	0.00	0.00	0.00	0.00	kN/m2	
	3	2.40	0.00	0.00	0.00	0.00	0.00		0.0	
	4		0.00	0.00	0.00	0.00	0.00	0.00	0.0	
	4	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
						888 A TOTAL	0.00	0.00	0.0	

| Sheet No. | Date:13-12-2018 | Checked :

Stage No.11 Apply load no.6 at elevation -3.00

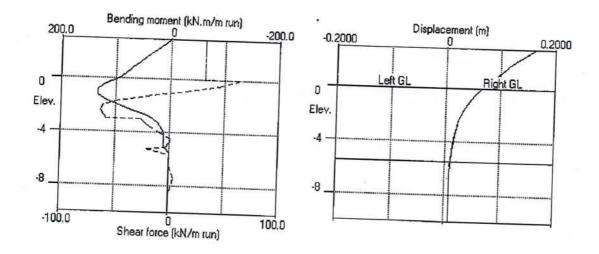
(continued)

Nod	e Y				RIGHT s			
no	. coord			Effecti	ve stresse	side	m-+-2	
		Water	Vertic	Active	Passive	Earth	Total	Adjusted
		press.		limit	limit	pressure	earth	soil
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	pressure	modulus
5	1.60	0.00	0.00	0.00	0.00	0.0000000000000000000000000000000000000	kN/m2	kN/m2
6	1.20	0.00		0.00	0.00	0.00	0.00	0.0
7	0.80	0.00		0.00	0.00	0.00	0.00	0.0
8	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	9	0.00	0.00	0.00	36.25	0.00	0.00	0.0
10	-0.40	0.00	7.19	0.00	66.71	36.22	36.22	24930
11	-0.80	0.00	14.34	0.00		66.71	66.71p	24930
12	-1.20	0.00	21.40	0.00	96.98	96.98	96.98p	24930
13	-1.60	0.00	28.34	0.00	126.88	110.56	110.56	24930
14	-2.00	0.00	35.15	0.82	156.29	64.65	64.65	24930
15	-2.40	0.00	41.82	2.56	185.13	43.16	43.16	24930
16	-2.70	0.00	46.74	3.83	213.41	36.73	36.73 .	24930
17	-3.00	0.00	51.59	5.09	234.24	36.49	36.49	24930
18	-3.30	0.00	56.38		254.79	38.76	38.76	24930
19	-3.60	0.00	61.11	6.33	275.06	40.43	40.43	24930
20	-4.00	0.00	67.34	7.56	295.10	40.17	40.17	24930
		0.00	67.34	9.18	321.49	37.18	37.18	24930
21	-4.40	0.00	73.50	12.91	286.06	37.00	37.00	14958
22	-4.70	0.00	78.09	14.66	309.95	53.24	53.24	14958
23	-5.00	0.00	82.65	15.96	327.74	62.57	62.57	14958
		0.00	82.65	17.25	345.43	75.64	75.64	14958
24	-5.25	0.00	86.69	8.55	458.65	150.97	150.97	49860
25	-5.50	0.00	90.71	9.52	478.27	72.33	72.33	49860
26	-5.60	0.00		10.48	497.84	10.48	10.48a	49860
27	-6.55	0.00	92.32 107.60	10.87	505.66	63.36	63.36	49860
28	-7.50	0.00	122.93	14.53	579.86	70.34	70.34	49860
-	7.50	0.00		18.21	654.32	72.83	72.83	49860
29	-8.75	0.00	122.93	0.00	930.02	79.53	79.53	69804
	-10.00	0.00	144.55 166.51	0.00	1041.46	85.31	85.31	69804
	22.00	0.00	100.21	0.00	1154.61	94.50	94.50	69804

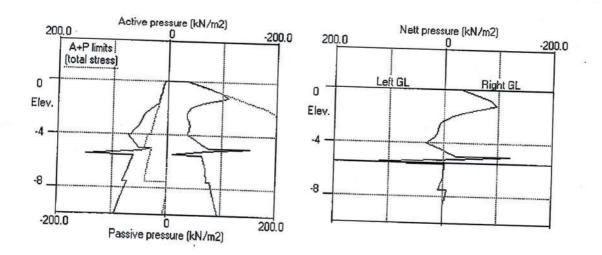
Note: 10.48a Soil pressure at active limit 96.98p Soil pressure at passive limit

HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53 | Job No.


Licensed from GEOSOLVE | Made by : WT

Flagstaff Hill


Retaining Wall Check | Date:13-12-2018

Units: kN,m

Stage No.11 Apply load no.6 at elev. -3.00

Stage No.11 Apply load no.6 at elev. -3.00

Retaining Wall Check Date:13-12-
Checked:

Summary of results

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

(12.0)		**	(3.1		r toe -5.50	Toe elev		
Stage	G	.L,	Strut	Factor	Moment			BANGSON CONTRACTA
No.	Act.	Pass.	Elev.		equilib.		Wall	Direction
1 2 3 4 5 6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	Cant. Cant. Cant. Cant.	Safety Condition Condition Condition No analy 2.300	at elev. ons not su vsis at th	uitable for uitable for uitable for uitable for	Fos co	alc.
	0.00	0.00	Cant. Cant.	1.986	-5.01	-4.09	4.09	L to R
8	0.00	0.00	Cant.	1.896	-5.02	-4.15	4.15	L to R
10	0.00	0.00	Cant.	1.869 1.854	-5.02	-4.25	4.25	L to R
11	0.00	0.00	Cant.	1.849	-5.01 -5.01	-4.30 -4.31	4.30 4.31	L to R L to R

HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53 | Job No.

Licensed from GEOSOLVE | Made by : WT

Flagstaff Hill

Retaining Wall Check | Date:13-12-2018

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.40m; spacing = 1.00m Passive mobilisation factor = 3.000 Length of wall perpendicular to section = 52.00m 2-D finite element model. Soil arching not modelled.

Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Smooth boundary Smooth boundary Smooth boundary

						Smooth	boundary
Ben	ding mome	nt, shear	force and	displacement	envelopes		
		-mopad	cement	Bending	moment	0.1	
no	. coord	maximum	minimum	maximum	minimum	Snear	force
		m	m	kN.m/m	kN.m/m	maximum	
1		0.163	0.000	0.0	-0.0	kN/m	kN/m
2		0.153	0.000	9.6		32.0	0.0
3		0.142	0.000	19.2	0.0	32.0	0.0
4		0.128	0.000	32.0	0.0	32.0	0.0
5	1.60	0.114	0.000	44.8	0.0	32.0	0.0
6	1.20	0.101	0.000	57.6	0.0	32.0	0.0
7	0.80	0.088	0.000	70.4	0.0	32.0	0.0
8	0.40	0.076	0.000	83.2	0.0	32.0	0.0
9	0.00	0.065	0.000	96.0	0.0	32.0	0.0
10	-0.40	0.055	0.000	119.2	0.0	64.0	0.0
11	-0.80	0.046	0.000	133.1	-1.4	46.2	-3.4
12	-1.20	0.039	0.000	133.2	-2.6	17.4	-15.4
13	-1.60	0.033	0.000	117.7	-3.4	0.0	-38.8
14	-2.00	0.028	0.000	94.6	-3.8	0.0	-48.5
15	-2.40	0.024	0.000	68.8	-3.9	0.0	-61.5
16	-2.70	0.022	0.000	49.8	-4.0	0.0	-64.2
17	-3.00	0.020	0.000	36.3	-4.4	0.0	-62.3
18	-3.30	0.019	0.000	25.7	-4.9	0.0	-59.3
19	-3.60	0.017	0.000	17.4	-5.6	0.0	-31.6
20	-4.00	0.015	0.000	10.9	-6.4	0.0	-23.9
21	-4.40	0.014	0.000	9.9	-7.4	0.5	-12.0
22	-4.70	0.012	0.000	10.4	-6.5	5.3	-1.7
23	-5.00	0.011	0.000	10.4	-4.3	9.4	0.0
24	-5.25	0.011	0.000		-0.9	12.9	-2.9
25	-5.50	0.010	0.000	6.0	0.0	1.7	-21.2
26	-5.60	0.010	0.000	0.0	-0.0	0.0	-6.9
27	-6.55	0.009	0.000	0.0	0.0	0.0	-0.0
28	-7.50	0.008	0.000	0.0	0.0	0.4	-0.2
29	-8.75	0.008	0.000	0.0	0.0	4.2	0.0
30	-10.00	0.008	0.000	0.0	0.0	0.4	-0.1
			3.000	0.0	0.0	0.0	0.0

Summary of results (continued)

Maximum	and	minimum	bending		10500038	75340	1000			
Stage	3			moment	and	shear	force	at	anah	

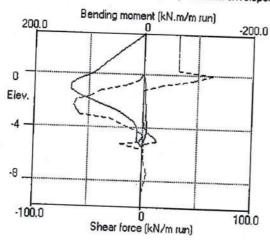
no.	maximum kN.m/m 0.8	Bending elev.	minimum kN.m/m	elev.	maximum kN/m	Shear elev.	force minimum	elev.
2 3 4 5	0.4 0.3 0.3 No calcula	-5.25 -5.25 -5.25 -5.25 ation at	-4.8 -7.1 -7.4 -7.4 this star	-4.00 -4.00 -4.00 -4.00 ge	7.9 12.2 12.8 12.9	-5.00 -5.00 -5.00 -5.00	kN/m -3.4 -3.1 -3.1 -3.0	-0.40 -0.40 -0.40 -0.40
6 7 8 9 10	123.9 124.0 131.5 133.2	-0.80 -0.80 -0.80 -0.80 -1.20 -1.20	-0.0 -0.0 -0.0 -0.0 -0.0	3.00 3.00 3.00 3.00 3.00 3.00	30.0 60.0 60.0 62.0 64.0 64.0	3.00 0.00 0.00 0.00 0.00	-46.5 -54.4 -59.3 -62.7 -63.7 -64.2	-1.60 -2.00 -2.40 -2.40 -2.40 -2.40
Marimum		05750						2.40

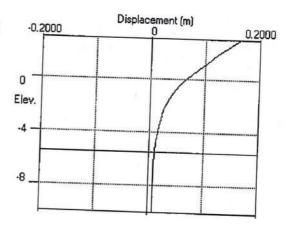
Maximum and minimum displacement at each stage

_		DISPLACEME	nt	Change
no.	maximum	elev. mi	nimum elev.	Stage description
1 2 3 4 5 6 7 8 9 10	m 0.007 0.009 0.010 0.010	-1.60 0 -3.00 0 -3.00 0 -3.30 0 splacements 3.00 0 3.00 0 3.00 0 3.00 0	m .000 3.00 .000 3.00 .000 3.00 .000 3.00 reset to zero .000 3.00 .000 3.00 .000 3.00 .000 3.00 .000 3.00 .000 3.00	Apply surcharge no.1 at elev. 0.00 Apply surcharge no.2 at elev. 0.00 Apply surcharge no.3 at elev. 0.00 Apply surcharge no.4 at elev. 0.00 Change EI of wall to 15210kN.m2/m run Apply load no.1 at elev. 3.00 Apply load no.2 at elev. 0.00 Apply load no.3 at elev3.00 Apply load no.4 at elev. 3.00 Apply load no.5 at elev. 3.00 Apply load no.5 at elev. 0.00 Apply load no.6 at elev3.00

HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53 | Job No.


Licensed from GEOSOLVE | Made by : WT


Flagstaff Hill

Retaining Wall Check | Date:13-12-2018

Units: kN, m

Bending moment, shear force, displacement envelopes

HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53 Sheet No. Job No. Licensed from GEOSOLVE Data filename/Run ID: Wallap_slide_check_DS_seis | Made by : Flagstaff Hill Retaining Wall Check | Date:13-12-2018 | Checked : Units: kN, m INPUT DATA SOIL PROFILE Stratum Elevation of ----- Soil types ---no. top of stratum Left side 0.00 1 Very Stiff Residual 1 Very Stiff Residual
-4.00 2 Weaker Zone 2 Weaker Zone
-5.00 2 Weaker Zone 2 Weaker Zone
-7.50 3 HW Rock 3 HW Rock 1 3 4 -7.50 SOIL PROPERTIES Young's At rest Consol Active Passive Bulk -- Soil type -- density Modulus No. Description kN/m3 Eh,kN/m2 coeff. state. limit limit Cohesion (Datum elev.) Ka (dEh/dy) (dKo/dy) (Nu) (Kac) (Kpc) (dc/dy) 25000 0.470 OC 0.259 4 236 1 Very Stiff 18.00 4.236 Residual (0.350) (1.185) (5.179) 2 Weaker Zone 18.00 15000 0.500 OC 0.284 3.878 5.000d (0.350) (1.240) (4.985) 3 HW Rock 20.00 70000 0.430 OC 0.229 5.153 50.00d (0.350) (1.101) (5.931) 4 CW Material 19.00 50000 0.440 0.240 4.858 OC 10.004 (0.350) (1.127) (5.719) Additional soil parameters associated with Ka and Kp --- parameters for Ka --- parameters for Kp ---Soil Wall Back- Soil Wall Back-

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

Left side Initial water table elevation Right side -3.00 -3.00

Automatic water pressure balancing at toe of wall : Yes

WALL PROPERTIES

Type of structure = Soldier Pile Wall

Soldier Pile width = 0.30 m

Soldier Pile spacing = 1.00 m

Passive mobilisation factor = 3.00

Elevation of toe of wall = -9.00Maximum finite element length = 0.50 m

Youngs modulus of wall E = 1.2100E+07 kN/m2

Moment of inertia of wall I = 1.2570E-03 m4/m run

= 1.2570E-03 m4 per pile

E.I = 15210 kN.m2/m run

Yield Moment of wall = Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Y		40.000 BBC - TRANSPORT	TO TIME THE		
Load no.	Elevation	Horizontal load	Moment load	Moment restraint	Partial factor
1	-1.00	kN/m run 22.50	kN.m/m run 0	kN.m/m/rad 0	(Category) N/A
3	-3.00 -5.00	22.50	0	0	N/A
5	-7.00 -1.00	22.50	0	ō	N/A N/A
6 7	-3.00 -5.00	1.500	0	0	N/A N/A
8	-7.00	1.500 1.500	0	0 0	N/A N/A

SURCHARGE LOADS

Surch -arge no. 1 2 3	Elev. 0.00 0.00 -2.00	Distance from wall 0.00(L) 3.40(L) -1.00(R) -7.00(R)	30.00		Surch kN/ Near edge 10.00 91.20 0.00 -96.84	m2	soil	Partial factor/ Category N/A N/A N/A	
--------------------------------------	--------------------------------	--	-------	--	---	----	------	---	--

Note: L = Left side, R = Right side

A trapezoidal surcharge is defined by two values: N = at edge near to wall, F = at edge far from wall

CONSTRUCTION STAGES

Construction stage no.	
1 2 3	Apply surcharge no.3 at elevation -2.00 Apply surcharge no.4 at elevation -2.00 Change EI of wall to 15210 kN.m2/m run Yield moment not defined
4 5 6 7 8 9 10 11 12	Reset wall displacements to zero at this stage Excavate to elevation -2.00 on RIGHT side Apply load no.1 at elevation -1.00 Apply load no.2 at elevation -3.00 Apply load no.3 at elevation -5.00 Apply load no.4 at elevation -7.00 Apply surcharge no.1 at elevation 0.00 Apply load no.5 at elevation -1.00 Apply load no.6 at elevation -3.00 Apply load no.6 at elevation -3.00 Apply load no.7 at elevation -5.00 Apply load no.8 at elevation -7.00

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis:

Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.50

Parameters for undrained strata:

Minimum equivalent fluid density Maximum depth of water filled tension crack = 5.00 kN/m3

Bending moment and displacement calculation: Method - 2-D finite element model

Open Tension Crack analysis? - No

Soil arching modelled? - Yes

Non-linear Modulus Parameter (L) = 0 m

Boundary conditions:

Length of wall (normal to plane of analysis) = 52.00 m

Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 50.00 m $\,$

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = -20.00

Lower rigid boundary at elevation -20.00 - Smooth Rigid boundary on Left side - Smooth

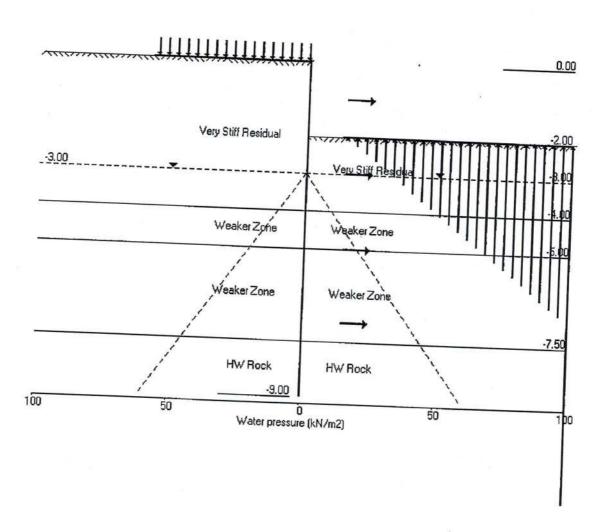
Rigid boundary on Right side Wall / soil interface

- Smooth - Rough

OUTPUT OPTIONS

Stage Stage description	Output	options	
	Displacement Bending mom.	Active, Passive	Graph.
1 Apply surcharge no.3 at elev2.00	Shear force	pressures	
2 Apply surcharge no.4 at elev2.00	No	No	No
3 Change EI of wall to 15210kN.m2/m run	No	No	No
4 Excav. to elev2.00 on RIGHT side	No	No	No
5 Apply load no.1 at elev1.00	No	No	No
6 Apply load no.2 at elev3.00	No	No	No
7 Apply load no.3 at elev5.00	No	No	No
8 Apply load no.4 at elev7.00	No	No	No
9 Apply surcharge no.1 at elev. 0.00	Yes	Yes	No
10 Apply load no.5 at elev1.00	No	No	No
11 Apply load no.6 at elev3.00	Yes	Yes	No
12 Apply load no.7 at elev5.00	Yes	Yes	Yes
13 Apply load no.8 at elev7.00	No	No	No
* Summary output	No	No	No
- anchar	Yes	_	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk


HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53

Licensed from GEOSOLVE
Data filename/Run ID: Wallap_slide_check_DS_seis
Flagstaff Hill
Retaining Wall Check

Units: kN,m

Stage No.13 Apply load no.8 at elev. -7.00

HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53 Sheet No. Job No. Licensed from GEOSOLVE Data filename/Run ID: Wallap_slide_check_DS_seis | Made by : WT Flagstaff Hill Retaining Wall Check | Date:13-12-2018 | Checked :

Units: kN, m

Stage No. 13 Apply load no.8 at elevation -7.00

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

Stage	6	ų.	1	FoS fo			ev. for	
No.	Act.	.L Pass.	Strut Elev.	Factor of	Moment equilib.	Toe elev.	Wall Penetr	Direction of
13	0.00	-2.00	Cant.	Safety 1.658	at elev. -8.53	-6.94	-ation	failure

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.30m; spacing = 1.00m Passive mobilisation factor = 3.000

Length of wall perpendicular to section = 52.00m

2-D finite element model. Soil arching modelled.

Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Smooth boundary Right side 20.00 from wall Lower rigid boundary at elevation -20.00 Smooth boundary Smooth boundary

*** Wall displacements reset to zero at stage 3

Nod	A. 10-20	Nett	Wall	Wall	6 3	644 ANT DESCRIPTION (\$100 - 0.000)	
no	. coord	pressure	disp.	rotation	Shear	Bending	Strut
		kN/m2	m	rad.	force	moment	forces
1		0.03	0.042	7.47E-03	kN/m	kN.m/m	kN/m
2		0.03	0.038	7.47E-03	0.0	0.0	
3	-1.00	0.02	0.034		0.0	0.2	
		0.02	0.034	7.46E-03	0.0	0.4	-24.0
4	-1.50	1.26	0.030	7.46E-03	24.0	0.4	
5	-2.00	3.54	0.027	7.26E-03	24.3	. 12.5	
		-29.43	0.027	6.66E-03	25.5	25.1	
6	-2.50	-60.31	0.024	6.66E-03	25.5	25.1	
7	-3.00	-46.20	0.021	5.72E-03	3.1	34.3	
		-46.20	0.021	4.72E-03	-23.5	28.3	-24.0
8	-3.50	-17.23	0.019	4.72E-03	0.5	28.3	
9	-4.00	0.98	0.019	3.91E-03	-15.4	22.8	
		11.97	0.017	3.34E-03	-19.4	13.1	
10	-4.50	-0.71	0.016	3.34E-03	-19.4	13.1	
11	-5.00	-4.38	0.014	3.03E-03	-16.6	4.9	
		-4.38	0.014	2.95E-03	-17.9	-3.4	-24.0
12	-5.50	-3.33	0.014	2.95E-03	6.1	-3.4	
13	-6.00	-0.83		2.93E-03	4.2	-0.8	
14	-6.50	1.33	0.011	2.83E-03	3.1	0.9	
15	-7.00	0.49	0.010	2.66E-03	3.3	2.4	
		0.49	0.009	2.47E-03	3.7	4.3	-24.0
16	-7.50	-4.91	0.009	2.47E-03	27.7	4.3	
54		-111.06	0.007	2.08E-03	26.6	18.3	
17	-8.00	-36.09	0.007	2.08E-03	26.6	18.3	
18	-8.50	5.30	0.007	1.54E-03	-10.2	17.8	
19	-9.00		0.006	1.15E-03	-17.9	8.2	
20	-9.13	52.93	0.005	1.03E-03	-3.3	0.0	
21	-10.56	-0.80	0.005	0	-0.1	0.0	
22	-12.00	0.13	0.005	0	-0.5	0.0	
15000	-2.00	-0.05	0.004	C	-0.5	0.0	

-			wall Cn					0	hate:13-12-201 Thecked :
S	tage	No.	l3 Appl	y load n	0.8 at e	levation -	-7.00	(continued)
	ode '	Y	Ne		Wall				
r	10.	coor	d pres		disp.	Wall	Shear	Bending	Strut
,		•00000	k	N/m2	m	rotation rad.	force	moment	forces
		14.0		0.15	0.004	140.	kN/m	kN.m/m	kN/m
	5 -	16.0	220	0.11	0.003	0	-0.4	0.0	
		18.0	2 8	0.08	0.003	0	-0.1	0.0	
4	0 -2	20.0	0 0	0.17	0.003	Ö	0.1	0.0	
No	de	Y				Ĭ.	0.0	0.0	
		coord	٠			LEF	T side		
120		COL	Water		Effec	LIVE STra	sses		
			press		C BCCTA	e Passin	ve Earth	Total earth	2
			kN/m	_		limit	pressure	eartn Pressu	2011
1	l	0.00	0.0				n2 kN/m2	kN/m	
2		0.50			1000 DO TO TO THE PARTY OF THE	0 78.6	0.03	0.0	
3		1.00					0 0.03	0.0	
4	-	1.50	0.00			0 154.5	9 0.02	0.0	
5		2.00	0.00			6 192.1	7 1.26	1.26	
			0.00				8 3.54	3.54	
6		2.50	0.00		1		4 3.54	3.54	la 24911 la 24911
7	-3	3.00	0.00				3 5.80	5.80	a 24911
8		3.50	5.00	66.56	y		1 15.47	15.47	24911
9	-4	.00	10.00				9 23.94	28.94	24911
0.007243			10.00		9.91 13.71			39.57	24911
10		.50	15.00	73.76	14.73			43.01	
11	-5	.00	20.00	77.36	15.75			41.02	
12		.50	25.00	80.98	16 79			43.78	
13		.00	30.00	84.62	17.81			49.27	14947
14		.50	35.00	88.28	18.85	317.77 330.54		55.79	14947
15		.00	40.00	91.96	19.90			62.42	14947
.6	-7	.50	45.00	95.66	20.95			67.84	14947
7	•		45.00	95.66	0.00	710.54		71.17	14947
L7 L8		00	50.00	100.37	0.00	732.42		45.00€	69752
.9	-8. -9.		55.00	105.11	0.00	754.39	7.12 28.53	57.12	69752
. 9	-9.	UU	60.00	109.87	0.00	776.44	53.43	83.53	69752
20	-9.	12	60.00	109.87	0.00	862.71	53.43	113.43	69752
1	-10.	13	61.25	111.06	0.00	868.85	26.47	113.43	69752
2	-12.	20	75.63	124.82	0.00	939.76	30.89	87.72	69752
3	-14.	00	90.00	138.68	0.00	1011.20	35.19	106.51	69752
4	-16.		110.00	158.10	0.00	1111.27	42.39	125.19 152.39	69752
5	-18.		150.00	177.64	0.00	1211.95	50.14	180.14	69752
	-20.		170.00	197.26	0.00	1313.09	58.41	208.41	69752
8			-10.00	216.96	0.00	1414.57	66.94	236.94	69752 69752
									09/32
de	Y					(W. 4.) (DM) = 1			
ο.	C001	cd				RIGHT s	ide		
		1	Water	Vertic	Active	ve stresse	s	Total	Adjusted
			press.	-al	limit	Passive	Earth	earth	soil
			kN/m2	kN/m2	kN/m2	limit	pressure	pressure	modulus
	0.0		0.00	0.00	0.00	kN/m2	kN/m2	kN/m2	kN/m2
	-0.5		0.00	0.00	0.00	0.00	0.00	0.00	0.0
	-1.0		0.00	0.00	0.00	0.00	0.00	0.00	0.0
	-1.5		0.00	0.00	0.00	0.00	0.00	0.00	0.0
	-2.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			0.00	0.00	0.00	0.00	0.00	0.00	0.0
	-2.5		0.00	8.63	0.00	66.12	32.97	32.97	24922
	-3.0		0.00	15.86	0.00	93.89	66.10	66.10	24922
	-3.50	100	5.00	16.90	0.00	97.95	61.68	61.68	24922
	-4.00		10.00	17.33	0.00	99.68	41.17 28.59	46.17	24922
			10.00	17.33	0.00	84.28	21.05	38.59	24922
							00	31.05	14953

Stage No.13 Apply load no.8 at elevation -7.00

(continued)

Node	-				DICUM +			
10 11 12 13 14 15 16 17 18 19	-4.50 -5.00 -5.50 -6.00 -6.50 -7.00 -7.50 -8.50 -9.00	Water press. kN/m2 15.00 20.00 35.00 40.00 45.00 55.00 60.00 60.00 61.25	kN/m2 17.51 17.65	Effective Active limit kN/m2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Passive limit kN/m2 85.02 85.60 86.43 87.76 89.73 92.42 95.88 361.73 371.87 383.04 395.24 439.15	Earth pressure kN/m2 26.73 28.16 27.60 26.62 26.09 27.35 31.08 111.06 43.21 23.23 0.50 0.50	Total earth pressure kN/m2 41.73 48.16 52.60 56.62 61.09 67.35 76.08 156.06 93.21 78.23 60.50 60.50	Adjusted soil modulus kN/m2 14953 14953 14953 14953 14953 69781 69781 69781 69781
20 21	-9.13 -10.56	61.25	28.36					69781
22	-12.00 -14.00	75.63 90.00 110.00	37.21 47.55 63.99	0.00	488.30 541.61	30.76 35.23	106.39 125.23	69781 69781 69781
	-16.00 -18.00 -20.00	130.00 150.00 170.00	82.26 101.90 122.55	0.00 0.00 0.00	626.28 720.46 821.68	42.23 50.03 58.33	152.23 180.03 208.33	69781 69781 69781
				0.00	928.06	67.11	237.11	69781

Note: 45.00a Soil pressure at active limit 123.45p Soil pressure at passive limit

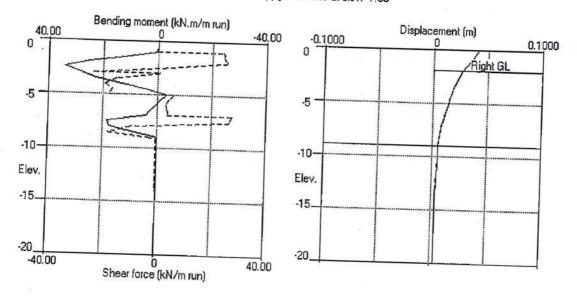
HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53

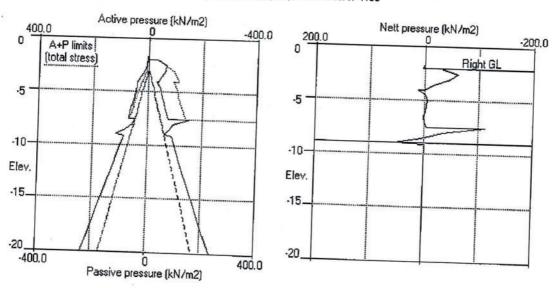
Licensed from GEOSOLVE

Data filename/Run ID: Wallap_slide_check_DS_seis

Flagstaff Hill


Retaining Wall Check

Date:13-12-2018


Checked:

Units: kN, m

Stage No.13 Apply load no.8 at elev. -7.00

Stage No.13 Apply load no.8 at elev. -7.00

Summary of results Units:	Checked:
Data filename/Run ID: Wallap_slide_check_DS_seis Retaining Wall Check	Job No. Made by : WT Date:13-12-2018
HAIGH WORKMAN Program: WALLAP Version 6.06 Revision A50.B69.R53	Sheet No.

Summary of results

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

S+	_	L World		FoS fo	or toe -9.00	Toe ele FoS =	ev. for 1.500		
Stage No.	2.50	3.L	Strut	Factor	Moment	Toe			
NO.	Act.	Pass.	Elev.	of	equilib.			Direct.	
1 2 3 4	0.00 0.00 0.00	0.00 0.00 0.00 -2.00	Cant. Cant.	Safety Conditi Conditi No anal	at elev. ons not su ons not su ysis at th	uitable fo uitable fo uis stage	-ation	7 -	
5	0.00	-2.00	Cant.	2.554	-8.66	-2.65	0.65	L to	R
6	0.00	-2.00	-	1.967		-4.73	2.73	L to	
4 5 6 7 8 9	0.00	-2.00	444	1.854	-8.51 -8.51		3.45	L to	
8	0.00	-2.00	Cant.	1.817	-8.54	-5.42	3.42	L to	R
	0.00	-2.00	Cant.	1.686	-8.54	-5.42	3.42	L to	
10 11	0.00	-2.00	Cant.	1.674	-8.53	-6.59 -6.78	4.59	L to	
	0.00	-2.00	Cant.	1.666	-8.53		4.78	L to	R
12	0.00	-2.00	Cant.	1.660	-8.53	-6.89	4.89	L to	
13	0.00	-2.00	Cant.	1.658	-8.53	-6.94 -6.94	4.94	L to	

HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53 | Job No.

Licensed from GEOSOLVE | Made by : WT

Flagstaff Hill

Retaining Wall Check | Date:13-12-2018

Units: kN, m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.30m; spacing = 1.00m
Passive mobilisation factor = 3.000
Length of wall perpendicular to section = 52.00m
2-D finite element model. Soil arching modelled.
Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Smooth boundary Smooth boundary Smooth boundary

_				20.00		Smooth !	boundary
Noc		Displ	acement	displacement Bending	envelopes		
no	. coord	maximum	minimum	maximum	moment	Shear	force
1 2 3 4 5 6 7 8 9 10 11 12 13	0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -3.00 -3.50 -4.00 -4.50 -5.50 -6.00 -6.50	m 0.042 0.038 0.034 0.030 0.027 0.024 0.021 0.017 0.016 0.014 0.013 0.011	m 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	kN.m/m 0.0 0.2 0.6 12.5 25.1 34.3 28.3 22.8 13.1 5.7 2.7 1.1 1.0 3.8	kN.m/m -0.0 -0.0 0.0 0.0 0.0 0.0 -0.6 -2.9 -5.1 -6.5 -7.2 -6.8	maximum kN/m 0.0 0.2 24.0 24.3 25.5 3.1 0.5 0.0 0.0 6.5 5.5 6.0	minimum kN/m 0.0 0.0 0.0 0.0 -0.8 -24.8 -17.3 -19.5 -16.6 -17.9 -1.9 -0.4
15 16 17 18 19 20 21 22 23 24 25 26	-7.00 -7.50 -8.00 -8.50 -9.00 -9.13 -10.56 -12.00 -14.00 -16.00 -18.00 -20.00	0.009 0.007 0.007 0.006 0.005 0.005 0.005 0.004 0.004 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0 18.4 17.8 8.2 0.0 0.0 0.0 0.0 0.0	-5.0 -1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.5 27.7 26.6 0.0 0.0 0.0 0.1 0.2 0.4 0.4 0.4	0.0 0.0 0.0 -10.4 -17.9 -3.3 -0.1 -0.6 -0.5 -0.5 -0.2 -0.0

Summary of results (continued)

no.	maximum	elev.	moment -	elev.		Shear	force	
	kN.m/m		kN.m/m	erev.	maximum	elev.	minimum	elev
1	1.4	-8.00	-2.8	-6.00	kN/m	2 111230	kN/m	
2	1.7	-8.00	-3 5	-6 00	5.7	-7.50	-2.1	-4.00
3	No calcul	ation at	this star	-0.00	7.9	-7.50	-2.4	-4.00
4	6.8	-8.00	-7.2	-5.50	16 7			
5	30.7	-2.50	-1.7	-6.00	16.7	-7.50	-6.9	-8.50
6	30.7	-2.50	0.0	0.00	22.8	-2.00	-17.3	-3.50
7	31.6	-2.50	-5.3	-5.00	22.8	-2.00	-24.6	-3.00
8	31.8	-2.50	-4.7	-5.00	23.2	-2.00	-24.8	-3.00
	31.9	-2.50	-4.5	-5.00	25.4	-7.00	-24.4	-3.00
10	34.2	-2.50	-3.2	-5.00	26.7	-7.00	-23.4	-3.00
11	34.2	-2.50	-2.9	-5.00	26.8	-7.00	-23.1	-3.00
12	34.2	-2.50	-3.5	-5.00	26.8	-7.00	-23.5	-3.00
13	34.3	-2.50	-3.4		26.8	-7.00	-23.5	-3.00
			5.4	-5.00	27.7	-7.00	-23.5	-3.00

Maximum	and	minimum	displacement	a+	onah	

_		DISPIAC	ement		Stage description
no.	maximum	elev.	minimum	elev.	
1 2 3 4 5 6 7 8 9 10 11 12 13		-6.00 -20.00 splaceme -3.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00	m 0.000 0.000 nts reset 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00 0.00 to zero 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Apply surcharge no.3 at elev2.00 Apply surcharge no.4 at elev2.00 Change EI of wall to 15210kN.m2/m run Excav. to elev2.00 on RIGHT side Apply load no.1 at elev1.00 Apply load no.2 at elev3.00 Apply load no.3 at elev5.00 Apply load no.4 at elev7.00 Apply surcharge no.1 at elev. 0.00 Apply load no.5 at elev1.00 Apply load no.6 at elev3.00 Apply load no.7 at elev5.00 Apply load no.7 at elev5.00 Apply load no.8 at elev7.00

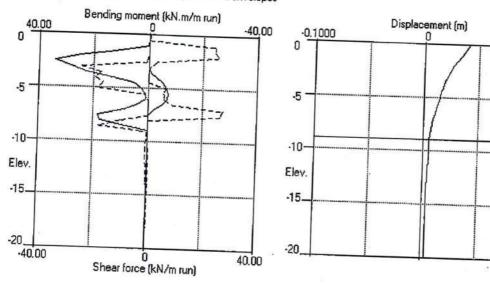
HAIGH WORKMAN

Program: WALLAP Version 6.06 Revision A50.B69.R53

Licensed from GEOSOLVE

Data filename/Run ID: Wallap_slide_check_DS_seis

Flagstaff Hill


Retaining Wall Check

Checked:

Units: kN,m

0.1000

Bending moment, shear force, displacement envelopes

Structural Design of Timber Pole to NZS 3603:1993

Timber Pole Size and Section Properties

Pole Diameter "d" = Increase in pole diameter due to taper mm/m =	400 6	mm mm
Depth from the top of the pole to the maximum moment (zero	4.20	
Pole Diameter "d _b " @ point of max moment =	425.2	m
Section Modulus "Z" @ point of may mamont -	7547092	mm mm³
beput from the top of the pole to maximum shear H =	3.0	
Pole Diameter "d _s " @ point of max shear =	418	m
Section Area "A _s " @ point of max shear =	102921	mm mm²
Check for Flexural Capacity		
Timber Grade (High or Normal)	h:_L	
Bending Stress, f _b =	high	
Strength Reduction Factor, φ =	52	MPa
Duration Factor k. =	0.8	
Factor for Trimming or Shaving under flexural load, $k_{20} =$	0.6	
Steaming Factor under flexural load, $k_{21} =$	0.85	(for f _b)
Dry Factor under flexural load, k_{22} (Default 1) =	0.85	(for f _b)
(Default 1) =	1	(for f _b)
$\phi M_n = \phi k_1 k_{20} k_{21} k_{22} f_b Z =$	136.10	kNm
Compare with M* =	133.00	kNm
Percentage of Moment capacity utilised OK for flexural strength & anti-	98%	
OK for flexural strength & optimum design a	achieved	
Check for Shear Capacity		
Shear Stress, f _s =	3.5	MPa
Strength Reduction Factor, ϕ =	0.8	WII G
Duration Factor, $k_1 =$	0.6	
Factor for Trimming or Shaving under shear load, $k_{20} =$	1.0	(for f _s)
Steaming Factor under shear load, k ₂₁ =	0.9	
Dry Factor under shear load, k_{22} (Default 1) =	1	(for f _s)
	₹ ! Xi	(for f _s)
$\phi V_n = \phi k_1 k_{20} k_{21} k_{22} f_s A_s =$	155.62	kN
Compare with V* =	90.0	kN
Percentage of Moment capacity utilised	58%	
Ok for Shear Capacity!		

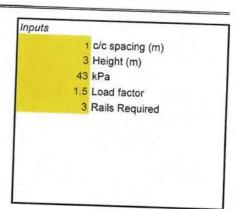
Project Flagstaff Hill Waitoto Developments Ltd Client Job No 18 260 Date 13/12/2018 Calculated by: W. Thorburn Reviewed by: J. Papesch Lagging Desing Comments

Factored load on the plank at the base of the wall =

64.65 kPa

Structural Design of Lagging to NZS 3603:1993

Timber Lagging: Structural actions


Lagging width b = 45 Lagging depth d = 145

For a maximum soil pressure of 64.6487996779117 kPa.

The UDL on lagging "d" = 9.37 kN/m Lagging Span "L" = m

Maximum factored moment M* = 1/8 dL2

1.172 kNm

Retained Height Lagging Details Rails Required

50 x 150 mm

100 x 150 mm

150 x 150 mm

0 - 0.6 m

0.6 - 2.7 m

2.7 m - 3.0 m

Under Flexure, calculate the minimum lagging depth for moment capacity

Bending Stress, fb = 11.7 MPa Shear Stress, f_s = 2.4 MPa No of parallel support elements, n = 3 Strength Reduction Factor, ϕ = 0.8 Duration Factor, k₁ = 0.6 Parallel Support Factor , k₄ = 1.00

Grid System Factor, k₅ = 1.00

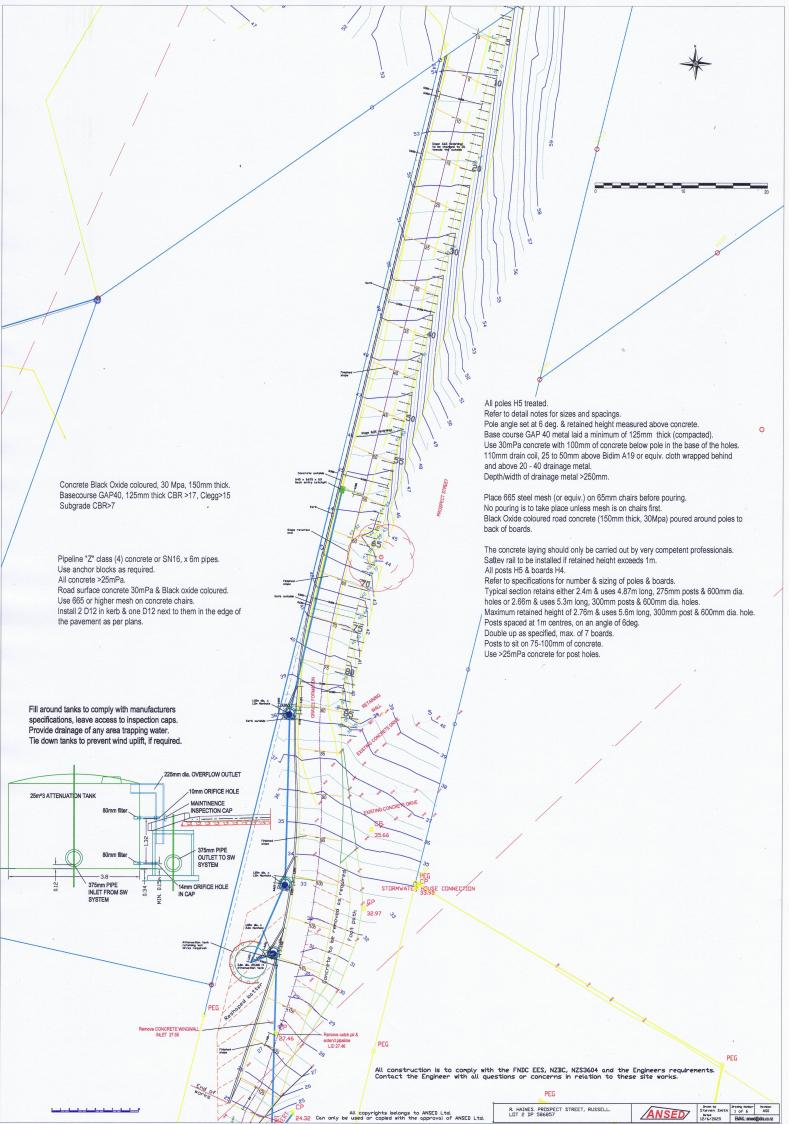
Section modulus of lagging, $Z = bd^2/6 =$ 440438 mm^3 $\phi M_n = \phi k_1 k_4 k_5 f_b Z =$ 2.473 kNm

Percentage of lagging moment capacity utilised 47%

Lagging OK for Moment Capacity!

Check for Shear Capacity

For x lagging. Shear surface area = 4350.0 mm²


> $\phi V_n = \phi k_1 k_4 k_5 f_s A_s =$ 5.011 kN

Compare with V* = 5.859 kN

Percentage of Shear capacity utilised 117% agging has insumicient Shear Capacity, 119 bigger size or aujust wan

 $V^* = 0.625wL$

Use x 0 lagging, spanning continuously across a minimum of 2 pole spacings

R. HAINES. PROSPECT STREET, RUSSELL. LOT 2 DP 586857

All construction is to comply with the FNDC EES, NZBC, NZS3604 and the Engineers requirements. Contact the Engineer with all questions or concerns in relation to these site works.

ROW LONG SECTION 0 to 65m

45.06

43.26

14.41

49.64

99.94

47.74

08.84

49.82

67.03

17.18

82.58

68.83

54.13

07.48

FORMATION LEVEL

Current centreline ground level

Stope 23.42 concrete proteine level

0.45 × 0.675 × 900. Back entry catchpit

22.6%

22.4%

21.7%

21.2%

20.3%

19.5%

18.4%

17.4%

16.3%

14.6%

11.5%

Centreline of road

(metres)

DATUM 42.00 FINISHED

Current centreline ground level Finished road centreline level

Centreline of road

54.45

45.40

43.58

44.38

74.24

99.94

69.74

87.84

49.82

58.03

99.13

74.23

53.21

6.63

94.45

EXISTING & PROJECTED GROUND LEVEL

₽E.O-

26.0-

60.0

70.0

860.0

640.0

610.0

900.0-

850.0-

0.052

701.0

781.0

0.223

132.0

FINISHED LEVEL FILL (CUT)

DISTANCE ALONG ROAD CENTRELINE

99

09

99

09

97

07

32

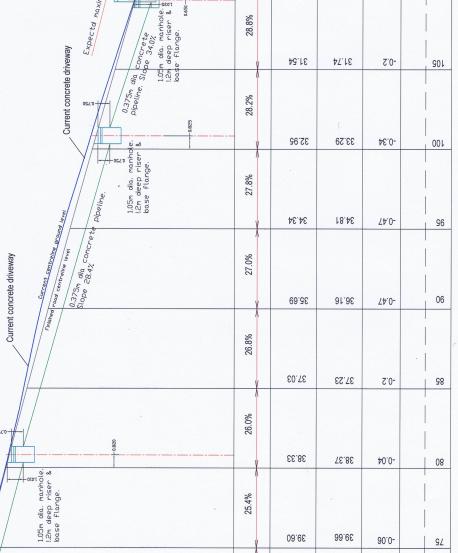
30

52

50

91

10


9

Scale 1:1 (Horizontal-Vertical)

Pipeline 'Z' class (4) concrete or SNI6, x 6m pipes. Use anchor blocks as required.
All concrete 22mPa.
Road surface concrete 30mPa.
Install 2 DI2 in kerb & one DI2 next to them in the edge of the pavement as per plans.

All copyrights belongs to ANSED Ltd. Can only be used or copied with the approval of ANSED Ltd.

All construction is to comply with the FNDC EES, NZBC, NZS3604 and the Engineers requirements, Contact the Engineer with all questions or concerns in relation to these site works.

25.2%

24.0%

FINISHED GRADIENTS

Centreline of road

DATUM 24.00

(metres)

98.04

45.06

FORMATION LEVEL

96.04

45.40

EXISTING & PROJECTED GROUND LEVEL

60.0-

₽E.0-

FINISHED LEVEL FILL (CUT)

04

99

ALONG ROAD CENTRELINE

DISTANCE

25.00

25.73

71.72

19.82

30.10

31.54

24.3%

28.8%

28.8%

29.8%

28.8%

Existing concrete

Finished road centreline ground level

ne. Slope 27.5%

1115

0.651

Existing catchpit,

Expected maximum height of bank contour

0.3m alla concrete Dipeline.

42.06

25.00

97.32

82.72

88.82

30.10

21.74

00.0

90.0-

11.0-

60.0

00.0

2.0-

128

152

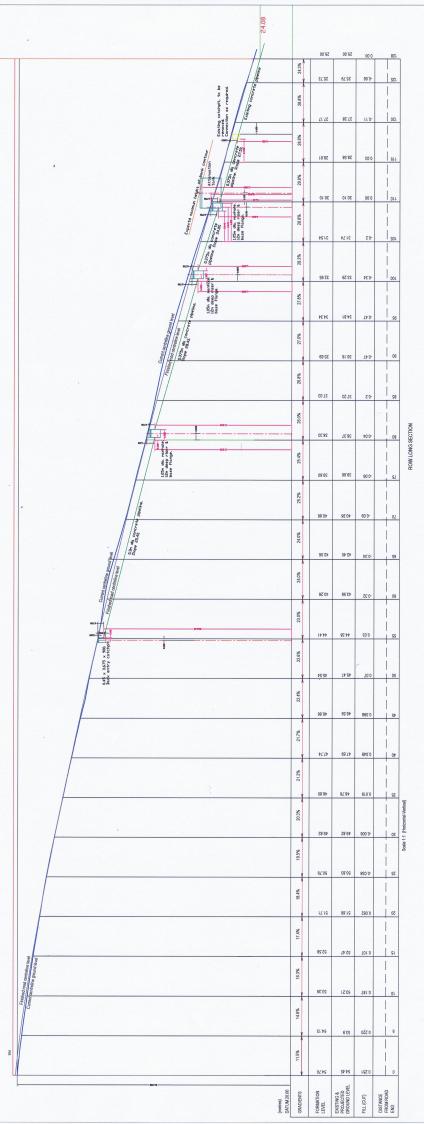
150

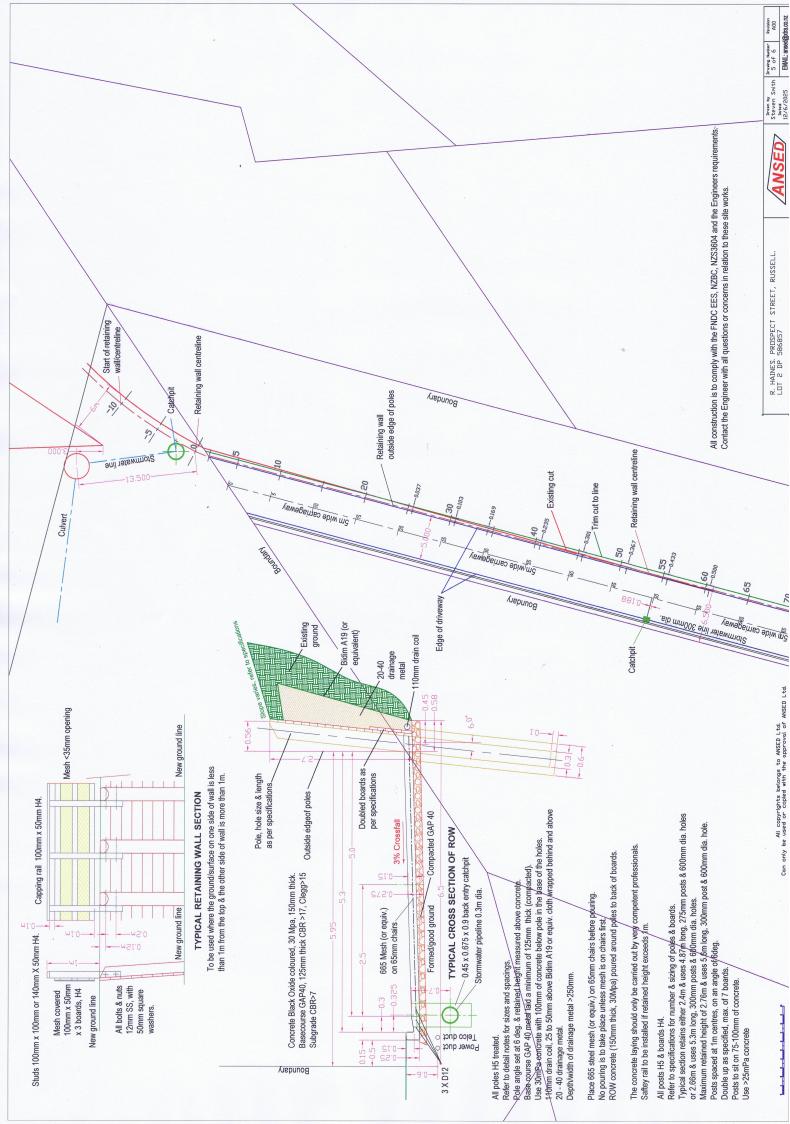
911

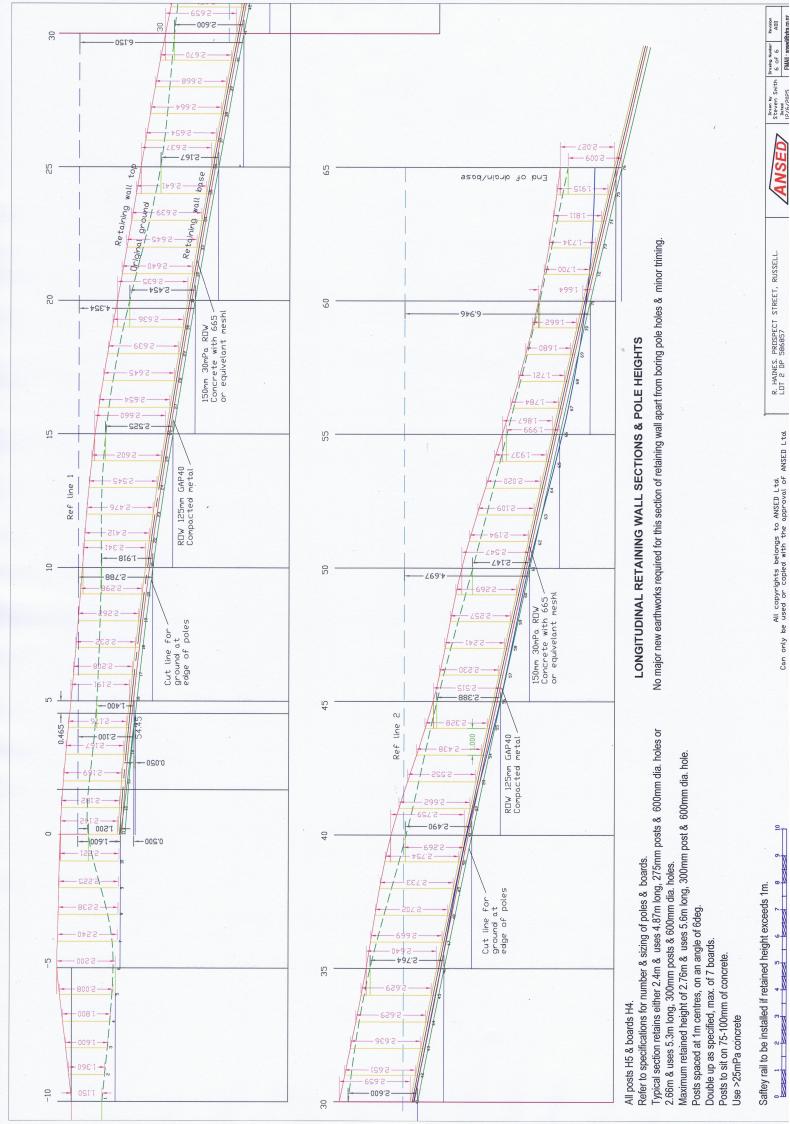
110

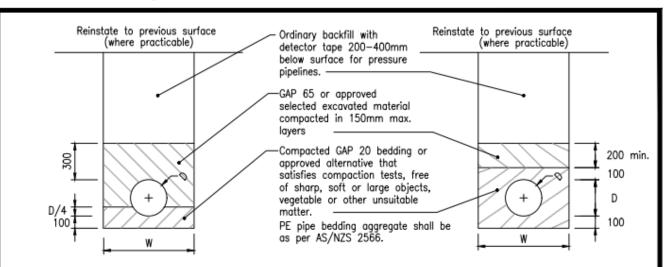
901

ROW LONG SECTION 65 to 128m

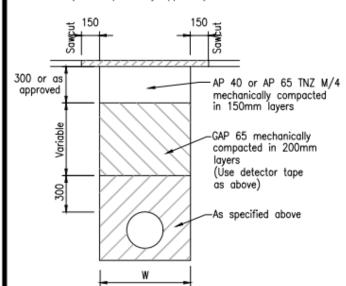

Pipeline "Z" class (4) concrete or SN16, x 6m pipes. Use anchor blocks as required.
All concrete >25mPa.
Road surface concrete 30mPa & Black Dxide coloured.
Use 665 or higher mesh on concrete chairs.
Install 2 D12 in kerb & one D12 next to them in the edge of the pavement as per plans.


ANSED Reven Swith A of 6 A00 have 12/6/2025 ENAL ared@na.nz


R. HAINES, PROSPECT STREET, RUSSELL. LOT 2 DP 586857


All copyrights belongs to ANSED Ltd. Can only be used or copied with the approval of ANSED Ltd.

All construction is to comply with the FNDC EES, NZBC, NZS3604 and the Engineers requirements. Contact the Engineer with all questions or concerns in relation to these site works.



CONCRETE, DUCTILE IRON, STEEL OR VITRIFIED CLAY PIPE

(Where specifically approved)

ADDITIONAL BACKFILL REQUIREMENTS UNDER CARRIAGEWAYS

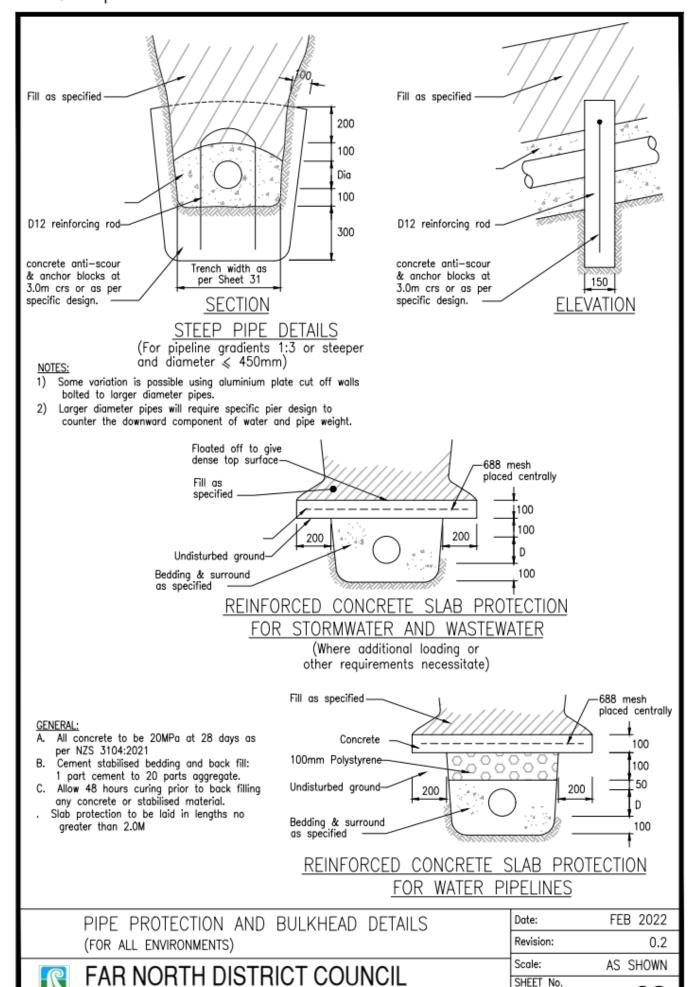
(All types of pipe)

W	TYPE OF PIPE
D + 600	Steel, DI
D + 450	Concrete
D + 450	Vitrified clay
D + 400	uPVC, PE & PP

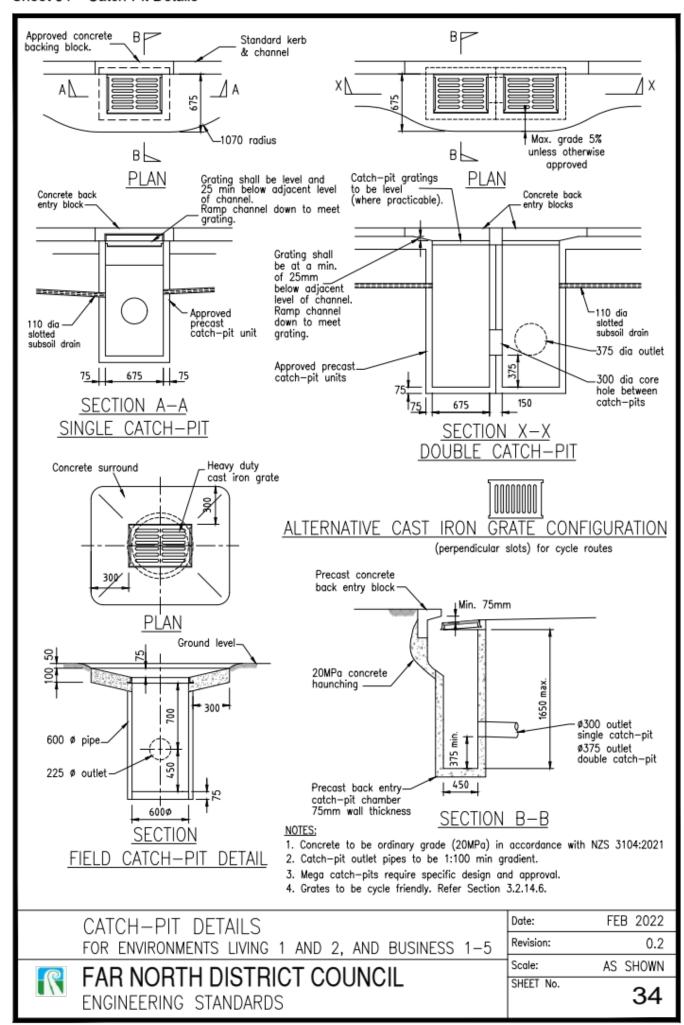
Variations in W require additional design compensation.

PVC, PE & PP PIPE
(PVC & PP not approved for water supply)

NOTES


- Concrete pipes to be RCRRJ to AS/ NZS 4058 installed to manufacturers requirements.
- Ordinary backfill shall be free from stones or rocks greater than 150mm nominal diameter compacted in 300mm layers.
- 3. Replace topsoil to original depth as necessary.
- Existing sealed roadway excavations are to be resurfaced with 50mm of asphaltic concrete.
- Clegg Hammer test: 0-300mm depth range Clegg reading not less than 45. 300mm-1.5m depth range Clegg reading not less than 30. 1.5m-top of pipe bedding material Clegg reading not less than 25.
- PRIVATEWAY base course metalling within pipe trenches may be in accordance with the Privateway Standards.
- 7. Trench width shall not exceed W at the pipe crown level.
- Unsatisfactory trench material is to be undercut and replaced with compacted hardfill.
 In poor soils such as swamp, peat, and in rock the minimum depth of granular bedding material below the invert is to be 200mm or specific design as necessary.
- Pipelines at 1:8 gradient or steeper shall have cement stabilised bedding and/or surrounds.
- Pipelines at 1:3 gradient or steeper shall have weak mix concrete bedding (10MPa) in accordance with Sheet 32. Large pipes will require specific pier design.
- Concrete bedding shall be allowed to cure for 48 hours prior to backfilling.
- Backfilling carriageways may be with 'flowable fill' (low strength fly-ash concrete).
- 13. Granular bedding is to satisfy N.Z.S. 7643 Appendix B.
- Minimum cover over pipes (unless specifically designed or protected in accordance with sheet 32).
 A. 600mm if not subjected to traffic loading
 - B. 900mm under carriageways and trafficed areas.
- 15. Sand is not permitted as PE Pipe Bedding

PIPE BEDDING & BACKFILL
(FOR ALL ENVIRONMENTS)


PAR NORTH DISTRICT COUNCIL
ENGINEERING STANDARDS

Date: FEB 2022
Revision: 0.2
Scale: AS SHOWN
SHEET No.
31

ENGINEERING STANDARDS

32

(does not include

Retaining wall A poles & details

Concrete >=25mPa 100mm of concrete Pole slope 6deg. New ground Below at bottom of hole) finished level Doubled Loaded Back slope Actual post overall Wall height Hole depth Distance Number Hole size Diameter Spacing (m) boards Description Degrees length 10 End post 0.45 0.15 0.45 2.84 Support post 1.55 -8 АЗ 1.6 0.45 0.175 1.79 3.32 Support post A4 1.8 25 0.45 0.2 1.98 3.71 Support post -6 A5 2.01 25 0.45 0.225 2.18 4.12 Support post -5 A6 25 0.45 0.25 2.35 4 48 5 Support post 2.2 -4 Α7 2.24 24 0 0.45 0.25 2.36 4.53 5 Support post -3 A8 Support post 2.24 23.1 0.45 0.25 2.33 4.5 1 5 A9 Support post 2.23 22.1 0.45 0.25 2.29 4.45 5 -2 A10 Support post 2.22 21.2 0.45 0.25 2 25 44 4 20.2 0 A11 Support post 2.15 0.45 0.25 2.36 4 44 4 A12 Support post 2 18 20.2 0.45 0.25 2 43 4 54 4 2 A13 Support post 2 17 20.3 0.45 0.25 2 49 4 59 1 4 3 A14 Support post 2 17 20.3 0.45 0.25 2 53 4 63 1 4 A15 Support post 2 18 204 0.6 0.25 2 57 4 68 1 20.4 5 A16 Support post 2 19 0.6 0.25 2.58 47 1 21.3 4.75 6 A17 Support post 2.21 0.6 0.25 2.61 22.2 2.23 2.62 4.78 A18 Support post 0.6 0.25 1 23.2 0.25 4.81 8 A19 Support post 2.26 0.6 2.62 24 1 9 A20 Support post 23 0.6 0.275 2 56 4 79 4.87 10 A21 Support post 2.34 0.6 0.275 2.6 24.6 A22 2.41 0.6 0.275 2.62 4.96 11 Support post A23 2.48 24.2 0.6 0.275 2.65 5.06 12 Support post 23.8 5.17 13 A24 2.55 0.6 0.275 2.69 Support post 2.60 A25 0.6 0.275 2.74 14 Support post 15 2.71 A26 2.66 0.6 0.3 Support post 5.3 16 A27 Support post 2.65 23 0.6 0.3 2.72 2.72 5.3 17 A28 2.65 0.6 0.3 Support post 18 A29 2.64 0.6 2.73 Support post 0.3 5.3 19 A30 2.64 0.6 0.3 2.73 Support post 20 A31 2.64 0.6 0.3 2.73 Support post 2.71 21 A32 2.64 0.6 0.3 Support post A33 2.65 0.6 0.275 Support post 23 21.2 0.275 2.7 5.27 A34 Support post 2.64 0.6 24 A35 2.64 20.6 0.6 0.275 2.68 Support post 5.24 25 A36 Support post 2.64 20 0.6 0.275 2.67 26 A37 Support post 2.65 0.6 0.275 2.72 27 A38 2.66 20 0.6 0.3 2.72 5.31 Support post 0.6 28 A39 Support post 2.67 0.3 A40 2.67 20 0.6 0.3 2.84 5.44 29 Support post 30 A41 Support post 2.66 0.6 0.3 2.91 5.5 31 A42 0.6 0.3 5.5 Support post 2.65 2.92 32 A43 2.64 0.6 5.5 Support post 0.3 2.93 33 A44 2.63 20 0.6 0.3 2.94 5.5 Support post 34 A45 Support post 2.63 20 0.6 0.3 2 94 5.5 35 A46 2.64 20 0.6 0.3 2.93 5.5 Support post 36 A47 Support post 2.67 0.6 0.3 2.92 5.52 37 A48 Support post 2.7 20 0.6 0.3 2.91 5.54 2.73 38 A49 Support post 20 0.6 0.3 2 91 5.57 39 A50 Support post 2.75 20 0.6 0.3 2.91 5 59 40 A51 Support post 2 76 0.6 0.3 2 92 5 61 1 41 A52 Support post 2 66 20 0.6 0.3 2 87 5 46 1 42 A53 Support post 2 55 20 0.6 0.3 283 5.31 1 43 A54 Support post 2 44 20 0.6 0.275 2.84 5.21 2.33 20 5.06 44 A55 Support post 0.6 0.275 2.8 1 45 2.52 20 4.91 A56 Support post 0.6 0.275 2.46 1 46 A57 Support post 2 23 192 0.6 0.275 2.73 4 89 1 47 A58 Support post 2 24 184 0.6 0.275 27 4 87 17.6 2.72 4.91 48 A59 Support post 2.26 0.6 0.25 49 A60 2.27 16.8 0.6 0.25 2.69 4.89 Support post 4.87 50 A61 Support post 2.55 16.0 0.6 0.25 2.39 4.76 51 A62 Support post 2.19 0.6 0.25 2.64 52 2.11 15.6 A63 0.45 0.25 2.61 4.65 Support post 53 2.02 15.4 0.45 0.25 4.55 A64 Support post 2.6 15.2 2.57 A65 1.94 0.45 0.25 4.44 54 Support post 55 15.0 2.58 4.38 A66 Support post 1.87 0.45 0.225 56 14.8 0.45 4.19 A67 Support post 1.78 0.225 2.48 57 A68 Support post 1.72 14.6 0.45 0.225 2.35 58 A69 1.68 14.4 0.45 0.2 2.25 3.86 Support post 59 A70 0.45 1.66 0.2 2.08 Support post 60 A71 1.66 0.45 0.2 1.89 Support post 61 A72 Support post 0.45 0.175 1.66 1.7 62 A73 1.73 0.45 0.175 Support post 1.4 5.6 63 A74 1.81 0.45 0.15 1.14 Support post A75 2.8 0.45 0.81 2.66 64 Support post 1.92 0.15 65 A76 End post 2.03 0.45 0.15 0.49 2.45

> Pole slope 6deg. Concrete >=25mPa

Hole size

Diameter

Hole depth Below finished level length
Actual post overall
(does not include
100mm of concrete
at bottom of hole)

Spacing (m) Doubled boards